

Maitre d'ouvrage :

Syndicat mixte des rivières du Sornin et de ses affluents (SYMISOA)

Qualité Physico-chimique et hydrobiologique des cours d'eau des bassins Sornin et Jarnossin

Bilan 2022

Rédaction : Maureen Mourot, hydrobiologiste

Supervision: Frédéric Garrivier, responsable laboratoire

Rapport rédigé par :

Table des matières

I	CONTEXTE	6
II	PRESENTATION DES BASSINS VERSANTS	7
II.1	Présentation du territoire	7
II. 2	Climat et hydrologie	7
Ш	LOCALISATION DES STATIONS	9
IV	PARAMETRES ANALYSES ET CAMPAGNES DE PRELEVEMENTS	11
V	METHODES	12
V.1	Mesures de débit	12
V.2	Physico-chimie	12
V.3	Macro-invertébrés – IBG-DCE et I ₂ M ₂	16
V.4	Critères d'évaluation de la qualité de l'eau	18
VI	RESULTATS	21
VI.1	Bassin Versant du Sornin	21
VI.2	Bassin Versant du Jarnossin	72
VII	SYNTHESE DE LA QUALITE DU SORNIN ET DU JARNOSSIN	83
VIII	I CONCLUSION	87
137	ANNEVEC	90

Table des figures

Figure 1 : Données hydrologiques sur le bassin versant du Sornin	8
Figure 2 : Localisation des stations suivies en 2022	
Figure 3 : Arbre d'évaluation de l'état écologique des eaux	
Figure 4 : Localisation et prise de vue du Ronzeau à Aigueperse (04410053)	
Figure 5 : Distribution taxonomique du Ronzeau à Aigueperse (04410053)	
Figure 6 : Résultats biologiques I2M2 et IBG-DCE sur le Ronzeau à Aigueperse (04410053)	
Figure 7 : Outil diagnostique sur le Ronzeau à Aigueperse (04410053)	
Figure 8 : Localisation et prise de vue du Sornin à Aigueperse (04410017)	
Figure 9 : Distribution taxonomique du Sornin à Aigueperse (04410017)	
Figure 10 : Résultats biologiques I2M2 et IBG-DCE sur le Sornin à Aigueperse (04410017)	
Figure 11 : Outil diagnostique sur le Sornin à Aigueperse (04410017)	
Figure 12 : Localisation et prise de vue du Sornin à Saint-Igny-de-Vers 2 (04410015)	
Figure 13 : Distribution taxonomique du Sornin à Saint-Igny-de-Vers 2 (04410015)	
Figure 14 : Résultats biologiques I2M2 et IBG-DCE sur le Sornin à Saint-Igny-de-Vers 2 (04410015)	
Figure 15 : Outil diagnostique sur le Sornin à Saint-Igny-de-Vers 2 (04410015)	
Figure 16 : Localisation du Sornin à La-Chapelle-sous-Dun (04410047)	
Figure 17 : Distribution taxonomique du Sornin à La-Chapelle-sous-Dun (04410047)	
Figure 18 : Résultats biologiques I2M2 et IBG-DCE sur le Sornin à La-Chapelle-sous-Dun (04410047)	
Figure 19 : Outil diagnostique sur le Sornin à La-Chapelle-sous-Dun (04410047)	
Figure 20: Localisation de la Genette à La Clayette (04015025)	
Figure 21: Distribution taxonomique de la Genette à La Clayette (04015025)	
Figure 22 : Résultats biologiques I2M2 et IBG-DCE sur la Genette à La Clayette (04015025)	
Figure 23 : Outil diagnostique sur la Genette à La Clayette (04015025)	
Figure 24 : Localisation du Ruisseau des Barres à Saint-Laurent-en-Brionnais (04410031)	
Figure 25 : Distribution taxonomique du Ruisseau des Barres (04410031)	
Figure 26 : Résultats biologiques I2M2 et IBG-DCE sur le Ruisseau des Barres (04410031)	
Figure 27 : Outil diagnostique sur le Ruisseau des Barres (04410031)	
Figure 28 : Localisation du Sornin à Saint-Maurice-les-Chateauneuf (04015050)	
Figure 29 : Résultats biologiques I2M2 sur le Sornin à Saint-Maurice-les-Chateauneuf (04015050)	
Figure 30 : Localisation et prise de vue du Mussy à Saint-Maurice-les-Chateauneuf (04410036)	
Figure 31 : Distribution taxonomique du Mussy à Saint-Maurice-les-Chateauneuf (04410036)	
Figure 32 : Résultats biologiques I2M2 et IBG-DCE sur le Mussy à Saint-Maurice-les-Chateauneuf (04410036)	
Figure 33 : Outil diagnostique sur le Mussy à Saint-Maurice-les-Chateauneuf (04410036)	
Figure 34 : Localisation et prise de vue du Botoret à Tancon (04410033)	
Figure 35 : Distribution taxonomique du Botoret à Tancon (04410033)	
Figure 36 : Résultats biologiques I2M2 et IBG-DCE sur le Botoret à Tancon (04410033)	
Figure 37 : Outil diagnostique sur le Botoret à Tancon (04410033)	46
Figure 38 : Localisation et prise de vue de l'Aron à Coublanc (04410029)	47
Figure 39 : Distribution taxonomique de l'Aron à Coublanc (04410029)	
Figure 40 : Résultats biologiques I2M2 et IBG-DCE sur l'Aron à Coublanc (04410029)	48
Figure 41 : Outil diagnostique sur l'Aron à Coublanc (04410029)	49
Figure 42 : Localisation et prise de vue du Pontbrenon à Coublanc (04410038)	50
Figure 43 : Distribution taxonomique du Pontbrenon à Coublanc (04410038)	51
Figure 44 : Résultats biologiques I2M2 et IBG-DCE sur le Pontbrenon à Coublanc (04410038)	51
Figure 45 : Outil diagnostique sur le Pontbrenon à Coublanc (04410038)	52
Figure 46 : Localisation et prise de vue du Botoret à Tancon (04410026)	53
Figure 47 : Résultats biologiques I2M2 sur le Botoret à Tancon (04410026)	54
Figure 48 : Localisation et prise de vue du ruisseau des Equetteries à Charlieu (04015160)	55
Figure 49 : Résultats biologiques I2M2 et IBG-DCE sur le Rau des Equetteries à Charlieu (04015160)	
Figure 50 : Distribution taxonomique du Rau des Equetteries à Charlieu (04015160)	
Figure 51 : Outil diagnostique sur le Rau des Equetteries à Charlieu (04015160)	
Figure 52 : Localisation et prise de vue du Bezo à Charlieu (04015190)	
Figure 53 : Distribution taxonomique du Bezo à Charlieu (04015190)	
Figure 54 : Résultats biologiques I2M2 et IBG-DCE sur le Bezo à Charlieu (04015190)	
Figure 55 : Outil diagnostique sur le Bezo à Charlieu (04015190)	60

Figure 56 : Localisation du Sornin à Charlieu (04015300)	61
Figure 57 : Résultats biologiques I2M2 sur le Sornin à Charlieu (04015300)	62
Figure 58 : Localisation et prise de vue du Chandonnet à Chandon (04410060)	63
Figure 59 : Distribution taxonomique du Chandonnet à Chandon (04410060)	64
Figure 60 : Résultats biologiques I2M2 et IBG-DCE sur le Chandonnet à Chandon (04410060)	64
Figure 61 : Outil diagnostique sur le Chandonnet à Chandon (04410060)	65
Figure 62 : Localisation du Chandonnet à Pouilly-sous-Charlieu (04015299)	66
Figure 63 : Distribution taxonomique du Chandonnet à Pouilly-sous-Charlieu (04015299)	67
Figure 64 : Résultats biologiques I2M2 et IBG-DCE sur le Chandonnet à Pouilly-sous-Charlieu (04015299)	
Figure 65 : Outil diagnostique sur le Chandonnet à Pouilly-sous-Charlieu (04015299)	68
Figure 66 : Localisation et prise de vue du Rau d'Aillant à Pouilly-sous-Charlieu (04410006)	
Figure 67 : Distribution taxonomique du Rau d'Aillant à Pouilly-sous-Charlieu (04410006)	70
Figure 68 : Résultats biologiques I2M2 et IBG-DCE sur le Rau d'Aillant à Pouilly-sous-Charlieu (04410006)	70
Figure 69 : Outil diagnostique sur le Rau d'Aillant à Pouilly-sous-Charlieu (04410006)	71
Figure 70 : Localisation du Jarnossin à Villers (04014780)	72
Figure 71 : Distribution taxonomique du Jarnossin à Villers (04014780)	73
Figure 72 : Résultats biologiques I2M2 et IBG-DCE sur le Jarnossin à Villers (04014780)	73
Figure 73 : Outil diagnostique sur le Jarnossin à Villers (04014780)	
Figure 74 : Localisation du Jarnossin à Jarnosse (04410059)	75
Figure 75 : Distribution taxonomique du Jarnossin à Jarnosse (04410059)	76
Figure 76 : Résultats biologiques I2M2 et IBG-DCE sur le Jarnossin à Jarnosse (04410059)	76
Figure 77 : Outil diagnostique sur le Jarnossin à Jarnosse (04410059)	77
Figure 78 : Localisation du Jarnossin à Coutouvre (04014800)	78
Figure 79 : Distribution taxonomique du Jarnossin à Coutouvre (04014800)	79
Figure 80 : Résultats biologiques I2M2 et IBG-DCE sur le Jarnossin à Coutouvre (04014800)	79
Figure 81 : Outil diagnostique sur le Jarnossin à Coutouvre (04014800)	80
Figure 82 : Localisation du Jarnossin à Pouilly-sous-Charlieu (04014900)	81
Figure 83 : Etat physico-chimique des stations des bassins versants du Sornin et du Jarnossin (selon l'arrêté du 27 juillet	
	83
Figure 84 : Etat biologique (I2M2 et IBG-DCE) des stations des bassins versants du Sornin et du Jarnossin	85
Figure 85 : Etat écologique des stations des bassins versants du Sornin et du Jarnossin	87

Table des tableaux

Tableau 1 :	Coordonnées des stations suivies en 2022	9
Tableau 2 :	extrait de l'arrêté du 27 juillet 2018 indiquant les valeurs seuils des classes d'états pour les paramètres physico	
•	Classe de qualité des paramètres physico-chimiques analysés sur le Ronzeau à Aigueperse (04410053)2	
	Synthèse des résultats physico-chimiques et biologiques sur le Ronzeau à Aigueperse (04410053)2	
	Classe de qualité des paramètres physico-chimiques analysés sur le Sornin à Aigueperse (04410017)2	
	Synthèse des résultats physico-chimiques et biologiques sur le Sornin à Aigueperse (04410017)2	
	Classe de qualité des paramètres physico-chimiques analysés sur le Sornin à Saint-Igny-de-Vers 2 (04410015)2	
	Synthèse des résultats physico-chimiques et biologiques sur le Sornin à Saint-Igny-de-Vers 2 (04410015)2	
	Classe de qualité des paramètres physico-chimiques analysés sur le Sornin à La-Chapelle-sous-Dun (04410047) 3	
	: Synthèse des résultats physico-chimiques et biologiques sur le Sornin à La-Chapelle-sous-Dun (04410047)3	
	: Classe de qualité des paramètres physico-chimiques analysés sur la Genette à La Clayette (04015025)	
	: Synthèse des résultats physico-chimiques et biologiques sur la Genette à La Clayette (04015025)	
	: Classe de qualité des paramètres physico-chimiques analysés sur le Ruisseau des Barres (04410031)3	
	: Synthèse des résultats physico-chimiques et biologiques sur le Ruisseau des Barres (04410031)	
	: Classe de qualité des paramètres physico-chimiques analysés sur le Sornin à Saint-Maurice-les-Chateauner	
Tableau 16	: Synthèse des résultats physico-chimiques et biologiques sur le Sornin à Saint-Maurice-les-Chateauneuf (04015050	
	: Classe de qualité des paramètres physico-chimiques analysés sur le Mussy à Saint-Maurice-les-Chateauner	u
` ,	4. (Combined to the control of the c	
	: Synthèse des résultats physico-chimiques et biologiques sur le Mussy à Saint-Maurice-les-Chateauneuf (04410036 4	3
Tableau 19	: Classe de qualité des paramètres physico-chimiques analysés sur le Botoret à Tancon (04410033)4	4
Tableau 20	: Synthèse des résultats physico-chimiques et biologiques sur le Botoret à Tancon (04410033)4	6
Tableau 21	: Classe de qualité des paramètres physico-chimiques analysés sur l'Aron à Coublanc (04410029)4	7
Tableau 22	: Synthèse des résultats physico-chimiques et biologiques sur l'Aron à Coublanc (04410029)4	9
Tableau 23	: Classe de qualité des paramètres physico-chimiques analysés sur le Pontbrenon à Coublanc (04410038)5	0
	: Synthèse des résultats physico-chimiques et biologiques sur le Pontbrenon à Coublanc (04410038)5	
	: Classe de qualité des paramètres physico-chimiques analysés sur le Botoret à Tancon (04410026)5	
	: Synthèse des résultats physico-chimiques et biologiques sur le Botoret à Tancon (04410026)5	
	: Classe de qualité des paramètres physico-chimiques analysés sur le Rau des Equetteries à Charlieu (04015160	0)
Tableau 28	: Synthèse des résultats physico-chimiques et biologiques sur le Rau des Equetteries à Charlieu (04015160)5	_
	: Classe de qualité des paramètres physico-chimiques analysés sur le Bezo à Charlieu (04015190)5	
	: Synthèse des résultats physico-chimiques et biologiques sur le Bezo à Charlieu (04015190)	
	: Classe de qualité des paramètres physico-chimiques analysés sur le Sornin à Charlieu (04015300)	
	: Synthèse des résultats physico-chimiques et biologiques sur le Sornin à Charlieu (04015300)	
	: Classe de qualité des paramètres physico-chimiques analysés sur le Chandonnet à Chandon (04410060)	
Tableau 35 :	: Synthèse des résultats physico-chimiques et biologiques sur le Chandonnet à Chandon (04410060)6: Classe de qualité des paramètres physico-chimiques analysés sur le Chandonnet à Pouilly-sous-Charlieu (0401529)	9)
	6: Synthèse des résultats physico-chimiques et biologiques sur le Chandonnet à Pouilly-sous-Charlieu (04015299)6	
Tableau 37	: Classe de qualité des paramètres physico-chimiques analysés sur le Rau d'Aillant à Pouilly-sous-Charlie	eι
	: Synthèse des résultats physico-chimiques et biologiques sur le Rau d'Aillant à Pouilly-sous-Charlieu (04410006)7	
	: Classe de qualité des paramètres physico-chimiques analysés sur le Jarnossin à Villers (04014780)7	
	: Synthèse des résultats physico-chimiques et biologiques sur le Jarnossin à Villers (04014780)	
	: Classe de qualité des paramètres physico-chimiques analysés sur le Jarnossin à Jarnosse (04410059)	
	: Synthèse des résultats physico-chimiques et biologiques sur le Jarnossin à Jarnosse (04410059)	
	: Classe de qualité des paramètres physico-chimiques analysés sur le Jarnossin à Coutouvre (04014800)	
	: Synthèse des résultats physico-chimiques et biologiques sur le Jarnossin à Coutouvre (04014800)8	
Tableau 45	Classe de qualité des paramètres physico-chimiques analysés sur le Jarnossin à Pouilly-sous-Charlieu (04014900: 8	

I Contexte

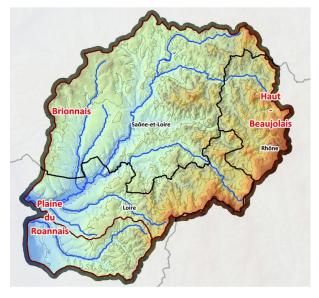
Le Syndicat Mixte des rivières du Sornin et de ses Affluents (SYMISOA) anime depuis juin 2017 le contrat de rivière Sornin, Jarnossin. Dans ce cadre, en 2022, CARSO-LSEHL a été missionné pour réaliser un suivi physico-chimique et biologique sur 18 stations, réparties sur les bassins versants du Sornin et du Jarnossin, afin d'établir un bilan.

Ce suivi concerne différents paramètres :

- Des paramètres physico-chimiques : oxygénation (DBO₅, COD, nutriments, matières en suspension ...),
- Des paramètres in-situ : température, oxygénation, pH, conductivité,
- Des paramètres environnementaux (présence de mousses, aspect des abords, conditions hydrologiques...)
- Des paramètres biologiques : macro-invertébrés (IBG-DCE et I2M2)
- Des mesures de débits.

Pour compléter ce suivi, 4 stations du réseau de suivi de l'Agence de l'Eau Loire-Bretagne sont également présentées dans ce rapport.

Il Présentation des bassins versants


Cette partie est issue du Contrat Territorial Sornin – Jarnossin (2017 – 2021), SYMISOA.

II.1 Présentation du territoire

Le territoire concerné par le contrat de rivière Sornin Jarnossin recoupe 59 communes structurées en 5 intercommunalités elles-mêmes situées sur 3 départements (la Loire, la Saône-et-Loire et le Rhône) et 2 régions.

Il est délimité à l'Est et Nord-Est par les massifs du Haut-Beaujolais, à l'Ouest par les vallons du Brionnais et au sud-est par la Plaine du Roannais.

La population est estimée à environ 35 000 personnes inégalement réparties sur un territoire à dominante rurale. Elle se concentre au niveau de secteurs urbains et péri-urbains proches de la région Roannaise, principal bassin d'emploi du secteur (Charlieu, Pouilly-sous-Charlieu...) et au niveau de quelques bourgs (Chauffailles, la Clayette). Les secteurs agricoles ou de montagnes (Brionnais, Haut-Beaujolais sont les plus délaissés avec des densités souvent inférieures à 25 hab/km².

Les 2 bassins versants limitrophes, affluents rive droite de la Loire dans la Plaine du Roannais, présentent les caractéristiques suivantes :

- le Sornin :
- bassin versant = 520 km2 pour un drain principal d'environ 60 km de long;
- sources situées dans le haut-Beaujolais, altitude □ environ 1000 m;
- confluence avec la Loire à Pouilly-sous-Charlieu, altitude □ environ 300 m;
- ➤ le Jarnossin :
- bassin versant = 68 km2 pour un drain principal d'environ 20 km de long ;
- sources situées sur le piémont du haut-Beaujolais à environ 600 m d'altitude ;
- confluence avec la Loire à Pouilly-sous-Charlieu, altitude □ environ 300 m;

II.2 Climat et hydrologie

Le climat du secteur présente des tendances océaniques-montagnardes. La pluviométrie moyenne est de l'ordre de 900 mm par an. Cependant, avec des zones sourceuses à des altitudes de plus de 1000 m à l'Est dans les Monts du Haut-Beaujolais et environ 400 m à l'Ouest, l'étagement altitudinal engendre un fort gradient pluviométrique entre le haut du bassin versant, très arrosé, et la partie Sud-Est du territoire beaucoup plus sèche.

Cette dichotomie n'est pas compensée par le contexte géologique qui est globalement peu propice (en dehors de la plaine alluviale en bords de Loire), à la formation d'aquifères importants. Il existe donc une forte disparité en terme de répartition de la ressource en eau sur le territoire. Cela se traduit par des régimes hydrologiques plus ou moins sensibles aux périodes de déficit hydrique (voir carte ci-dessous – source CESAME 2008). La ressource la plus abondante est logiquement située sur les affluents du Haut-Beaujolais (Sornin de Saint-Igny, Sornin de Propières...) tandis que les affluents rive droite du Sornin (Equetteries...) et les affluents du Jarnossin (Tesche, Jarnossin de Cuinzier...) sont soumis à des étiages très sévères voir des assecs récurrents.

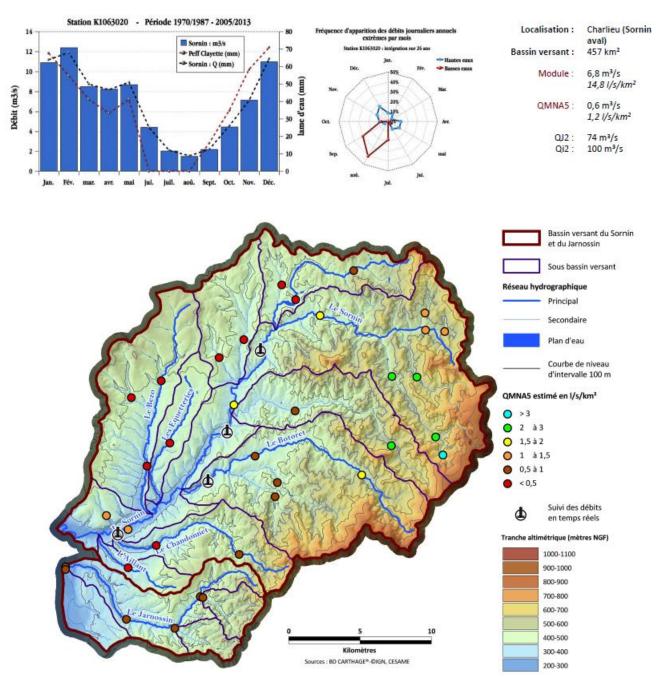


Figure 1 : Données hydrologiques sur le bassin versant du Sornin

III Localisation des stations

Le réseau de suivi du SYMISOA en 2022 représente 18 stations situées sur les bassins versants du Sornin et du Jarnossin. A ce rapport, s'ajoutent également 4 stations du réseau de suivi de l'Agence de l'Eau Loire-Bretagne.

Le tableau et la figure ci-dessous résument les différentes stations et leur localisation.

Tableau 1 : Coordonnées des stations suivies en 2022

Bassin Versant	code station	nom station	Cord X Lb93	Cord Y Lb93
	04410053	RONZEAU A AIGUEPERSE	810440	6577109
	04410017	R SORNIN A AIGUEPERSE	808980	6575687
	04410015	R SORNIN A SAINT-IGNY-DE-VERS 2	807726	6574781
	04410047	SORNIN A LA CHAPELLE-SOUS-DUN	800322	6576181
	04015025	GENETTE A LA CLAYETTE	800067	6576373
	04410031	RU DES BARRES A ST LAURENT EN B.	798039	6575822
	04015050	SORNIN A ST MAURICE LES CHATEAUNEUF	797044	6570620
	04410036	MUSSY A ST MAURICE LES CHATEAUNEUF	797863	6570185
Sornin	04410033	BOTORET A TANCON	796828	6565790
Commi	04410029	ARON A COUBLANC	798538	6566107
	04410038	PONTBRENON A COUBLANC	798454	6565189
	04410026	BOTORET A TANCON	795389	6565474
	04015160	RAU DES EQUETTERIES À CHARLIEU	791936	6564227
	04015190	BEZO à CHARLIEU	791219	6563134
	04015300	SORNIN A CHARLIEU	788959	6561770
	04410060	CHANDONNET A CHANDON	793436	6561921
	04015299	CHANDONNET à POUILLY-SCHARLIEU	788874	6561726
	04410006	RAU D'AILLANT À POUILLY-SCHARLIEU	788333	6560317
	04014780	JARNOSSIN à VILLERS	795457	6558169
Jarnossin	04410059	JARNOSSIN A JARNOSSE	795726	6556813
Jamossin	04014800	JARNOSSIN à COUTOUVRE	792863	6555251
	04014900	JARNOSSIN A POUILLY-SCHARLIEU	785567	6559376

Les stations du réseau de suivi de l'Agence de l'Eau sont en police bleue

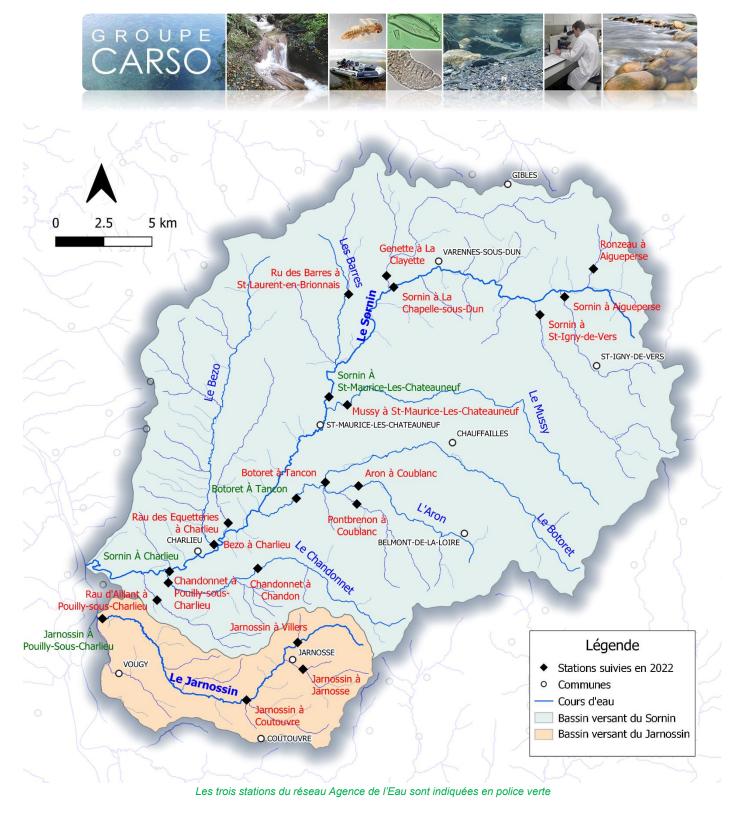


Figure 2 : Localisation des stations suivies en 2022

IV Paramètres analysés et campagnes de prélèvements

> Suivi physico-chimique :

Les différents types de relevés et d'analyses effectués sur les stations sont les suivantes :

- Les paramètres d'observation (limpidité, ombre, odeur, aspect des abords, météo, etc...)
- Les mesures in-situ (pH, O2 dissous, saturation, conductivité, température)
- Les paramètres physico-chimiques analysés en laboratoire :
 - o concentration en nutriments (orthophosphates, phosphore total, ammonium, nitrites, nitrates)
 - o oxygénation (DBO, COD)
 - o matières en suspension, turbidité
- Les débits.

Ces paramètres ont été suivi au cours de 6 campagnes de prélèvement :

Février: les 22, 24
Avril: les 12,13
Juin: les 28, 29, 30
Aout: les 16, 17
Octobre: les 26, 27

• Décembre : les 20, 21, 22

> Suivi hydrobiologique:

Le suivi hydrobiologique s'est déroulé en période de basses eaux estivales, au cours d'une seule campagne. Le compartiment analysé est celui des macroinvertébrés benthiques (IBG-DCE / I2M2).

Les prélèvements ont eu lieu les 13, 14 15 et 16 juin 2022.

V Méthodes

V.1 Mesures de débit

Les débits sont mesurés avec un courantomètre électromagnétique de marque Hydreka avec la méthode de la mesure par exploration du champ de vitesses comme décrite dans le guide du prélèvement d'échantillons en rivière de l'Agence de l'eau Loire-Bretagne de 2006. Cela consiste à relever les vitesses d'écoulement données par l'appareil le long d'un transect à différentes profondeurs selon le profil morphologique de la station :

- Si la profondeur ne dépasse pas 25cm, une mesure à 40% de la profondeur totale est réalisée en plusieurs points le long du transect.
- Si la profondeur dépasse 25cm, 3 mesures sont nécessaires : à 20%, 40% et 80% de la profondeur totale, en plusieurs points du transect.

Le transect choisi doit comporter le plus possible d'écoulements réguliers (tronçon rectiligne) afin d'obtenir une précision satisfaisante. La profondeur doit être suffisante pour permettre l'immersion totale de l'appareil. Le nombre de points réalisés sur le transect dépend du profil transversal du cours d'eau. S'il est homogène (fond plat et peu de dénivelé en berge par exemple), 5 points de mesures peuvent suffire. S'il est plus complexe, le nombre de points est augmenté de façon à suivre au mieux les variations de vitesses et la courbe du fond du cours d'eau. Les données sont ensuite exploitées au laboratoire.

V.2 Physico-chimie

L'ensemble des paramètres physico-chimiques a été échantillonné directement dans le lit du cours d'eau. Les flacons sont rincés trois fois avec l'eau de la rivière (excepté ceux contenant un conservateur). L'eau est échantillonnée à mi-profondeur en évitant l'éventuel film sur la surface et en évitant également les particules en suspension du fond. Les flacons sont conservés à 4°C.

TEMPERATURE

La température d'une rivière peut influencer des paramètres comme le taux de saturation de l'oxygène dissous. Les organismes vivants sont sensibles aux variations de températures et un développement optimal de la faune et de la flore polluosensible est uniquement possible à température inférieure à 20°C dans les eaux salmonicoles. La température d'un cours d'eau est mesurée directement dans le cours d'eau à l'aide d'une sonde multiparamètres.

NUTRIMENTS

L'évolution des paramètres azotés (NH₄+, NO₃-, NO₂-) est importante car elle conditionne en partie le niveau trophique du cours d'eau c'est-à-dire la croissance ou non des végétaux aquatiques, base de la chaîne alimentaire, et particulièrement des algues. Les matières azotées et phosphorées, font partie des éléments nutritifs essentiels d'un milieu pour le développement de la vie. Mais la concentration entre chaque forme moléculaire doit être en équilibre.

<u>L'ammonium</u> NH4⁺ : c'est la première forme d'azote minérale soluble, résultant de la dégradation rapide de l'azote organique par hydrolyse grâce à des bactéries spécialisées, naturellement présentes dans le milieu naturel. Un rejet de STEP peut contenir de l'ammonium, si le traitement de l'eau usée n'a pas été efficace (oxygénation suffisante pour la transformation complète en nitrites puis nitrates et éventuellement dénitrification de la STEP). L'ammonium s'oxyde lentement en nitrates dans la rivière (bactéries nitrifiantes), et consomme de l'oxygène. L'ammonium, aux pH >9 couramment rencontrés dans les cours d'eau très eutrophes, se transforme en ammoniac, gaz dissous, très toxique pour les poissons. Le dosage des ions ammonium est réalisé par spectrophotométrie après coloration en bleu d'indéphénol.

No2: Au niveau du cycle de l'azote, les nitrites s'insèrent entre l'ammonium et les nitrates. Leur présence est due soit à l'oxydation bactérienne de l'ammoniac, soit à la réduction des nitrates. Ils ne représentent qu'un stade intermédiaire très fugace. Les nitrites ne se maintiennent que lorsque le milieu n'est pas assez oxydant et leur présence indique un état critique de pollution organique (à l'aval d'un rejet de STEP ne fonctionnant pas correctement par exemple). Les nitrites sont un poison violent pour les poissons notamment, car ils entravent la circulation de l'oxygène dans le sang. Les nitrites sont dosés grâce à une réaction colorimétrique spécifique dont l'intensité est évaluée par spectrophotométrie d'absorption, par rapport à une courbe d'étalonnage réalisée dans les mêmes conditions.

<u>Nitrates</u>NO₃⁻ : Ils sont la forme oxydée finale de l'azote organique. Dans les rivières ils ont ainsi deux origines principales :

- les eaux usées par les activités humaines : domestiques (eau d'assainissement) et industrielles (comme l'agro-alimentaire) :
- les effluents agricoles : lessivage par l'eau de pluie des engrais ou des épandages de fumiers sur les cultures et pâtures, particulièrement au printemps ou en hiver à la suite d'orages importants.

L'effet majeur des nitrates dans les eaux de surface est l'eutrophisation. Ce processus se déclenche quand les eaux sont trop chargées en nitrates (et en phosphates), ces deux nutriments permettant la croissance des plantes et particulièrement des algues. Quand ils sont tous les deux en grande quantité dans l'eau, les algues microscopiques (phytoplancton) et filamenteuses se développent de façon excessive au détriment des végétaux fixés (macrophytes). Ce développement excessif d'algues augmente la turbidité des eaux de surface, modifie leur couleur et peut être source d'odeurs nauséabondes potentiellement dangereuses. Lorsque les algues et les autres plantes meurent, les microorganismes les décomposent rapidement et relarguent ainsi la matière azotée et phosphorée en consommant l'oxygène de la colonne d'eau. Cette consommation peut aller jusqu'à induire une anoxie, c'est à dire une absence totale d'oxygène dans l'eau. Ce qui a pour conséquence l'envasement du milieu et une perte de la biodiversité par la mort des poissons et invertébrés. Un excès de nitrates peut également affecter la distribution des eaux potables. L'analyse des nitrates est effectuée par chromatographie ionique (principe d'une colonne échangeuse d'ions capable de retenir les analytes recherchés). La conductivité du signal est ensuite analysée et comparée à celle d'une gamme étalon de concentrations connues.

<u>L'azote Kjeldah</u>l NKJ : ce paramètre mesure la somme de l'azote organique non oxydé et peu soluble (protéines, acides aminées des matières vivantes et l'urée) et de l'azote ammoniacal (couple acide/base ammoniac NH3 et ammonium NH4+, première forme de dégradation de l'azote organique par hydrolyse).

Une forte concentration en NKJ peut entraîner une consommation excessive d'oxygène dissous dans l'eau liée à la transformation de l'azote organique en azote ammoniacal. Au-delà d'une certaine dose (0,025mg/L), l'ammoniac NH3 est toxique pour les organismes vivants.

<u>Les matières phosphorées</u> participent aussi à l'eutrophisation des cours d'eau. La présence de phosphore dans un cours d'eau est importante, car en trop faible concentration il peut s'avérer limitant pour la croissance de plantes et, de la même façon, une teneur trop élevée peut favoriser le développement d'algues et mener à l'eutrophisation du cours d'eau. Les matières phosphorées proviennent de l'érosion des sols, des rejets de l'industrie (le cas de certaines industries agro-alimentaires et chimiques), de déjections humaines et de rejets de détergents ou lessives enrichies en phosphates afin d'adoucir l'eau et pour la plus grande part de l'activité agricole (engrais phosphatés).

<u>Le phosphore total</u> Ptot : il correspond à la somme du phosphore organique se trouvant dans les cellules de tous les organismes vivants et du phosphore inorganique dissous ou particulaire fixé sur des matières en suspension. Le phosphore organique se dégrade sous l'action d'enzymes en phosphore inorganique appelé phosphate. Le phosphore total est dosé après une minéralisation sous forme d'orthophosphates pour une concentration minimum de 0.5 mg/L de PO43-. Le dosage s'effectue par spectrophotométrie après coloration en bleu de molybdène. Les résultats sont rendus en mg/L.

<u>Les orthophosphates</u> (ions PO₄³⁻) sont la forme la plus simple et la plus répandue des phosphates dans l'eau. L'orthophosphate existe sous des formes variées dépendant du pH et des concentrations de sels minéraux dans l'eau.

Le dosage s'effectue par spectrophotométrie après coloration en bleu de molybdène. La limite de quantification est de 0.01 mg/L en PO₄³⁻ et les concentrations sont calculées en mg/L.

ACIDIFICATION

<u>Le pH</u> traduit le degré d'acidité ou d'alcalinité du milieu aquatique. Il mesure la concentration en ions H+ de l'eau. Tout comme la température, les organismes vivants sont très sensibles aux variations de pH et un développement correct de la faune et de la flore est possible pour un pH compris entre 6 et 9. Ce paramètre va dépendre naturellement de la géologie du bassin versant. Les activités humaines peuvent avoir un impact avec certains rejets industriels par exemple. Le pH peut évoluer dans la journée notamment avec la photosynthèse et la respiration de la végétation aquatique. Il est directement mesuré dans le cours d'eau à l'aide d'une sonde multiparamètre.

OXYGENATION, MATIERES ORGANIQUES ET OXYDABLES

<u>L'oxygène</u> représente environ 35% des gaz dissous dans l'eau. Sa teneur (en mg/l) est déterminée principalement par :

- sa consommation par la respiration des organismes aquatiques, oxydation et dégradation des polluants
- son apport par l'activité photosynthétique de la flore et les échanges avec l'atmosphère.

La dissolution de l'oxygène dans l'eau dépend de la température de l'eau (plus une eau est froide, plus l'oxygène se dissous). Le stock en oxygène dans l'eau est limité et par conséquent très fragile. L'oxygène est indispensable au bon fonctionnement de l'écosystème, aussi bien vis-à-vis de la faune et la flore que des bactéries aérobies qui entrent dans l'autoépuration du milieu

Le taux de saturation en oxygène et la concentration en oxygène dissous sont mesurés directement dans le cours d'eau à l'aide d'une sonde multiparamètres.

La mesure de l'oxygénation d'une eau se fait, en plus de la concentration en oxygène dissous, à travers la mesure du Carbone Organique Dissous (COD) et la Demande Biologique en Oxygène (DBO). Il s'agit de deux paramètres indicateurs des matières organiques facilement biodégradables. Ces paramètres permettent d'appréhender la qualité générale du milieu.

<u>La DBO</u> est la quantité d'oxygène servant à la dégradation de composés susceptibles d'être présents par les microorganismes d'une eau. Sa mesure se fait sur un échantillon d'eau ensemencé avec un inoculum bactérien. La teneur en oxygène dissous est mesurée à l'aide d'une sonde, au temps initial puis après 5 jours d'incubation à 20°C à l'obscurité. Par différence, on obtient la quantité d'oxygène consommée par les microorganismes.

<u>Le COD</u> provient de la décomposition des organismes végétaux et animaux. Il peut également provenir de substances organiques émises par les effluents domestiques et industriels. C'est le COD qui donne une coloration brune ou ambrée à l'eau. Un cours d'eau contenant beaucoup de matières en décomposition verra sa teneur en COD augmenter et sa teneur en oxygène baisser, puisque les micro-organismes nécessaires à la décomposition consomment l'oxygène. La teneur en carbone organique d'une eau est déterminée à l'aide d'un COT-mètre à oxydation par voie humide. Le carbone organique est transformé en CO₂ sous l'effet de la température et du catalyseur ; le CO₂ est dosé par infrarouge et quantifié par rapport à une gamme d'étalonnage.

LA MINERALISATION

L'évaluation de la minéralisation peut se faire, entre autre au travers de la mesure de la conductivité.

La conductivité rend compte de la quantité de sels dissous dans l'eau en mesurant la résistance qu'oppose l'eau au passage d'un courant électrique. Plus la quantité de sel dissous est importante, plus la conductivité de l'eau sera élevée et plus la pression osmotique sera forte. Ces sels dissous peuvent provenir des minéraux du sol que l'eau a traversé (dépend de la nature des roches du bassin versant) mais ils peuvent aussi provenir de la transformation

des matières organiques en composés minéraux simples (ions), seuls assimilables par les plantes. L'eau contient beaucoup d'ions dissous dont les principaux sont le calcium (Ca++), le magnésium (Mg+), le sodium (Na+), le potassium (K+), les carbonates (CO3--), les bicarbonates (HCO3-), les sulfates (SO4--), les chlorures (CI-) et les nitrates (NO3-). La plupart des organismes animaux et végétaux supérieurs sont capables de s'adapter lentement à des pressions osmotiques ambiantes et variables. Par contre, les œufs de reproduction de ces organismes en sont incapables, limitant ainsi l'abondance des macro-invertébrés ou des poissons.

LES MATIERES EN SUSPENSION (MES)

Les <u>MES</u> représentent la quantité totale en mg de particules minérales ou organiques insolubles qui contribuent à la turbidité dans 1 litre d'eau. Elles proviennent de rejets urbains, industriels et/ou agricoles ainsi que des phénomènes d'érosion des sols (liés notamment aux précipitations des pluies). Leur effet néfaste est d'une part physique, en formant un écran empêchant la bonne pénétration de la lumière (réduction de la photosynthèse), et en colmatant les habitats et les branchies des organismes vivants comme les poissons. Leur effet est d'autre part chimique en véhiculant des molécules éventuellement toxiques (par exemple métaux lourds) qui se lient aux sédiments des zones plus lentes du cours d'eau.

V.3 Macro-invertébrés – IBG-DCE et I₂M₂

Les macro-invertébrés aquatiques regroupent les insectes (larves, nymphes ou adultes), les crustacés, les mollusques, les vers et autres invertébrés, fixés sur un substrat ou non, dont une partie au moins du cycle de vie est aquatique. Ils doivent être de taille suffisante pour être retenus par un filet de 500µm.

La diversité ainsi que la polluosensibilité des organismes présents conditionnent la note de l'indice.

Exemple de macro-invertébrés odonates, éphéméroptère et trichoptère

La méthode appliquée sur le terrain respecte les préconisations de la norme NF T90-333. Les relevés de terrain figurent dans les annexes aux rapports d'essai.

La méthode consiste à échantillonner grâce à un filet Surber de maille 500µm, 12 habitats dans le cours d'eau. Ces 12 habitats sont choisis en fonction de leur habitabilité et de leur représentativité sur la station. Pour recueillir les larves d'insectes présents dans ces habitats, l'opérateur frotte, peigne ou récolte le substrat devant le filet Surber. Les invertébrés sont alors entraînés au fond du filet et piégés. Le contenu du filet est ensuite mis en flacon, fixé à l'aide de formol ou d'alcool et ramené au laboratoire où il fera l'objet d'un tri pour séparer les invertébrés du substrat. Puis la détermination des macro-invertébrés est effectuée au niveau requis par la norme NF T 90-388.

Les résultats sont interprétés au sens de la DCE. Selon l'Arrêté du 27 juillet 2018, l'I₂M₂ est le nouvel indice de référence pour définir l'état biologique à partir des macro-invertébrés. L'I₂M₂ permet de corriger les faiblesses de l'IBG-DCE, notamment la non prise en compte de l'abondance et de la diversité relative des taxons polluosensibles par rapport aux taxons polluorésistants. De plus, il est constitué de plusieurs métriques élémentaires, permettant de discriminer d'avantage les altérations anthropiques et ils sont directement exprimés en EQR (*Ecological Quality Ratio*). Il s'agit d'un ratio sur une échelle de 0 à 1 introduisant le rapport entre l'état observé et l'état de référence que devrait avoir le milieu en l'absence de perturbation anthropique. Toutes ces caractéristiques lui permettent d'être plus adapté aux exigences européennes.

La valeur de l'I₂M₂ est déterminée par l'association de 5 métriques élémentaires :

- L'indice de diversité de Shannon-Weaver (Shannon & Weaver 1963);
- L'ASPT, indice de polluosensibilité (Average Score Per Taxon, Armitage et al. 1983);
- La fréquence relative des espèces polyvoltines (plusieurs générations au cours d'une même année) ;
- La fréquence relative des espèces ovovivipares (mode de reproduction). Chez les organismes ovivipares, l'incubation des œufs est réalisée dans l'abdomen de la femelle, l'éclosion suit immédiatement l'expulsion des œufs dans le milieu aquatique. L'ovoviviparité est une stratégie de reproduction qui permet de maximiser la survie au stade embryonnaire, en isolant les œufs des contraintes environnementales du milieu extérieur.
- La richesse taxonomique (niveau B de la norme NF T90-388).

Les cinq métriques composant l'indice ont été choisies pour leur capacité de discrimination d'un grand nombre de pressions, pour leur non redondance ainsi que pour leur stabilité en conditions de référence.

 $L'l_2M_2$ améliore significativement l'identification des sites perturbés en prenant en compte les relations « pression / impact » pour des pressions à la fois physico-chimiques (10 catégories de pression du SEQ Eau V2) et en lien avec la dégradation de l'habitat (7 altérations).

Toutefois, l' l_2M_2 ne donne pas une information spécifique sur la nature des principales pressions. Pour cela, **l'outil diagnostique**, développé en complément de l' l_2M_2 , est également présenté dans ce rapport. Cet outil permet d'identifier plus précisément les pressions anthropiques du site étudié grâce au calcul de la probabilité d'impact des 17 altérations prises en compte. Sur ces diagrammes, chaque graduation représente 20 % et il faut considérer qu'une pression peut être significative lorsqu'elle atteint au moins 70%.

Les 17 altérations sont les suivantes :

- Pressions liées à la qualité physico-chimique de l'eau :
 - Matière organique
 - Matières azotées
 - Nitrates
 - Matières phosphorées
 - Particules en suspension
 - Acidification
 - Métaux
 - Pesticides
 - HAP
 - Micropolluants organiques
- Définitions des altérations hydromorphologiques :
 - Voies de communication : Taux de voies de communication dans le lit mineur.
 - Ripisylve: Taux de couverture forestière dans la zone de 30m de part et d'autre du lit mineur.
 - Urbanisation : Taux d'urbanisation dans une zone de 100m de part et d'autre de la rivière.
 - Risque de colmatage : Risque potentiel d'érosion des sols.
 - Instabilité hydrologique : Prend en compte le rapport « surface agricole irriguée / surface totale » dans le bassin-versant et le rapport « volume d'eau retenu / volume d'eau qui s'écoule ».
 - Degré d'anthropisation : Prend en compte le pourcentage du bassin-versant urbanisé, le pourcentage du bassin-versant en agriculture intensive et le pourcentage du bassin versant en surfaces naturelles.
 - Rectification : Taux de rectitude à l'échelle du sous-tronçon.

A souligner qu'il s'agit d'un modèle statistique permettant d'orienter le diagnostic mais que les informations générées ont un caractère informatif et ne constituent pas des preuves irréfutables. Il faut donc rester prudent dans les conclusions et les mettre en relation avec des analyses physico-chimiques de l'eau notamment.

A noter que pour la pression « nitrates » le modèle de l'outil diagnostique a été créé à partir des seuils de qualité du SEQ-Eau, soit une limite du « bon » état fixé à 10 mg/L pour les nitrates. Or, ce seuil étant passé à 50 mg/L depuis l'Arrêté du 27/07/2015, l'outil diagnostique peut ainsi révéler une pression nitrates subie par la macrofaune, alors que l'état sera « bon ».

Par ailleurs, en complément de l'I₂M₂, l'IBG-DCE est présenté dans ce rapport afin d'apprécier la comparaison des indices. Il est calculé sur la base des données issues des phases A et B (norme NF T90-350). Cet indice allie la richesse taxonomique (au niveau de la famille, sur une échelle de 1 à 14) au groupe indicateur (GI) le plus polluosensible (sur une échelle de 1 à 9) présent dans la station étudiée.

V.4 Critères d'évaluation de la qualité de l'eau

Systeme d'Evaluation de l'Etat des Eaux (SEEE)

L'état écologique d'un cours d'eau est fonction de la qualité de différents paramètres : la physico-chimie, la biologie et l'hydromorphologie. Avec la mise en place de la DCE, l'ancien système de référence (SEQ'Eau) est remplacé par l'arrêté du 25 janvier 2010 modifié du 27 juillet 2018. Il permet pour chacun de ces éléments de qualité, de définir une classe de qualité associée à un code couleur :

Classe de qualité	Très Bon	Bon	Moyen	Médiocre	Mauvais	Indéterminé
Code couleur						

La règle d'agrégation des éléments de qualité pertinents pour le type de masse d'eau considéré, dans la classification de l'état écologique, est celle du **principe de l'élément de qualité déclassant**. Le schéma suivant indique les rôles respectifs des éléments de qualité biologique, physico-chimiques et hydromorphologiques dans la classification de l'état écologique.

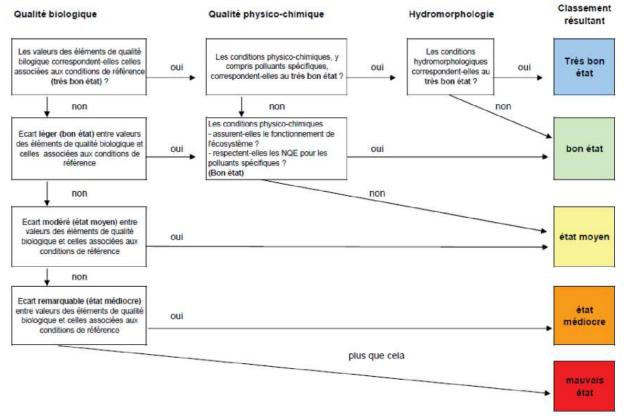


Figure 3 : Arbre d'évaluation de l'état écologique des eaux

Concernant les paramètres physico-chimiques, la classe de qualité est attribuée directement en fonction des concentrations dans le cours d'eau. Le tableau ci-dessous reprend les valeurs seuils :

Tableau 2 : extrait de l'arrêté du 27 juillet 2018 indiquant les valeurs seuils des classes d'états pour les paramètres physicochimiques

		Limites des d	classes d'état	
Paramètres par élément de qualité	Très bon / Bon	Bon / Moyen	Moyen / Médiocre	Médiocre / Mauvais
Bilan de l'oxygène			W- 11011	
Oxygène dissous (mg O ₂ /I)	8	6	4	3
Taux de saturation en O2 dissous (%)	90	70	50	30
DBO ₅ (mg O ₂ /I)	3	6	10	25
Carbone organique dissous (mg C/I)	5	7	10	15
Température				
Eaux salmonicoles	20	21,5	25	28
Eaux cyprinicoles	24	25,5	27	28
Nutriments				
PO ₄ 3- (mg PO ₄ 3-/I)	0,1	0,5	1	2
Phosphore total (mg P/I)	0,05	0,2	0,5	1
NH ₄ + (mg NH ₄ +/I)	0,1	0,5	2	5
NO ₂ (mg NO ₂ /I)	0,1	0,3	0,5	1
NO ₃ - (mg NO ₃ -/I)	10	50	*	
Acidification ¹				
pH minimum	6,5	6	5,5	4,5
pH maximum	8,2	9	9,5	10
Salinité		111		
Conductivité	*	*	*	*
Chlorures	*	*	*	*
Sulfates	*	*	*	*

¹ acidification : en d'autres termes, à titre d'exemple, pour la classe bon état, le pH min est compris entre 6,0 et 6,5 ; le pH max entre 9,0 et 8,2.

Règle d'agrégation des paramètres pour évaluer l'état des éléments de qualité physico-chimique :

Extrait du paragraphe 2.2 de l'annexe 2 de l'arrêté du 27/07/2018 :

« Lorsque plusieurs paramètres interviennent pour le même élément de qualité physico-chimique général (cf. liste tableau ci-dessus), on applique pour l'évaluation de cet élément le principe du paramètre déclassant : l'état d'un élément de qualité correspond à la plus basse des valeurs de l'état des paramètres constitutifs de cet élément de qualité.

Toutefois, pour réduire les erreurs de classement lorsque les valeurs sont proches du seuil entre les états « bon » et « moyen », un élément de qualité physico-chimique général constitué de plusieurs paramètres (bilan en oxygène et nutriments) pourra être classé en état « bon » lorsque les deux conditions suivantes sont réunies :

- tous les éléments de qualité biologique et les autres éléments de qualité physico-chimique généraux sont classés dans un état « bon » ou « très bon » ;
- un seul paramètre constitutif de cet élément de qualité est classé dans un état « moyen ».

Dans ce cas, le paramètre physico-chimique déclassant est classé en état « moyen » et l'élément de qualité correspondant est classé en état « bon ». Pour les cours d'eau, cette disposition ne s'applique pas au paramètre relatif aux nitrates pour le classement en « bon » état. Ainsi, en d'autres termes, une masse d'eau dont le paramètre relatif aux nitrates est classé en état moins que « bon » (concentration supérieure à 50 mg/l) est classée en état écologique moins que « bon ». Les deux paramètres oxygène dissous et taux de saturation en 02 dissous sont intimement liés et dépendants. De ce fait, ils doivent être considérés comme un seul paramètre pour appliquer les modalités d'agrégations décrites ci-dessus pour évaluer l'état de l'élément qualité relatif au bilan en oxygène. En l'absence de données physico-chimiques, l'état écologique est égal à l'agrégation des éléments de qualité biologique. »

^{*:} les connaissances actuelles ne permettent pas de fixer des seuils fiables pour cette limite.

Concernant les paramètres biologiques, l'attribution d'une classe de qualité prend en compte la notion d'hydroécorégion et d'EQR (*Ecological Quality Ratio*). Les hydroécorégions sont des zones géographiques définies selon différents critères, principalement géologiques, climatiques et altitudinales. Ainsi, la France a été découpée en 22 hydroécorégions (cf. figure ci-après).

L'EQR est un rapport entre un état observé et l'état que devrait avoir le cours d'eau en l'absence de perturbations anthropiques. Il est calculé à partir des notes équivalents-IBGN et les valeurs de références de chaque hydroécorégion.

Pour cette étude, les prélèvements biologiques sont situés dans les hydroécorégions :

- HER 3 : Massif Central Sud. La note de référence est de 19/20.
- HER 17 : Dépressions Sédimentaires. La note de référence est de 19/20.
- HER 21 : Massif Central Nord. La note de référence est de 19/20.

L'IBGN-équivalent en EQR s'obtient selon la formule :

Note observée – 1 / Note de référence du type – 1

L'I2M2 est une note directement exprimée en EQR.

Pour l'équivalent-IBGN, l'état biologique est défini selon l'Arrêté du 27/07/2015.

L'I2M2 est le nouvel indice de référence pour définir l'état biologique à partir des macro-invertébrés. L'état biologique est défini selon l'Arrêté du 27/07/2018.

Les limites des classes d'états sont les suivantes :

Tableau : valeurs de références et limite des classes d'états pour l'IBG-DCE et l'12M2 selon l'hydroécorégion

Е	Etat biologique			Bon	Moyen	Médiocre	Mauvais
HER 3	TP, P	IBG-DCE en EQR	≥ 0,94444	≥ 0,77777	≥ 0,55555	≥0,27777	< 0,27777
	TP, P	I2M2	≥ 0,665	≥ 0,443	≥ 0,295	≥ 0,148	< 0,148
1150.47	TP, P	IBG-DCE en EQR	≥ 0,93333	≥ 0,80000	≥ 0,53333	≥0,33333	< 0,33333
HER 17	TP	12M2	≥ 0,665	≥ 0,443	≥ 0,295	≥ 0,148	< 0,148
	Р	IZIVIZ	≥ 0,665	≥ 0,498	≥ 0,332	≥ 0,166	< 0,166
HER21	TP, P	IBG-DCE en EQR	≥ 0,94444	≥ 0,77777	≥ 0,55555	≥0,27777	< 0,27777
	TP, P	I2M2	≥ 0,665	≥ 0,443	≥ 0,295	≥ 0,148	< 0,148

SEQ-EAU

Certains paramètres physico-chimiques ne sont pas pris en compte dans l'arrêté du 27 juillet 2018. C'est le cas par exemple de l'azote Kjeldhal, de la turbidité et des matières en suspension. Dans ce cas, le SEQ-Eau est utilisé. L'attribution d'une classe de qualité est basée sur le même principe que précédemment (valeurs-seuils des concentrations).

		Limites des classes d'états					
		Très Bon /	Bon /	Moyen /	Médiocre /		
		Bon	Moyen	Médiocre	Mauvais		
Azote Kjeldhal NKJ (mg/L)		1	2	4	10		
Turbidité (NTU)	Turbidité (NTU)		35	70	100		
Matières en suspension MES (mg/L)		2	25	38	50		
Conductivité (µS/cm)	min	180	120	60	0		
	max	2500	3000	3500	4000		

VI Résultats

Les stations sont présentées par bassin versant et d'amont vers l'aval.

Toutes les informations complémentaires aux analyses biologiques (plans d'échantillonnage, listes faunistiques, ...) figurent en annexe.

VI.1 Bassin Versant du Sornin

VI.1.1 Le Ronzeau à Aigueperse (04410053)

VI.1.1.1 <u>Description de la station</u>

Le Ronzeau est un affluent rive droite du Sornin, situé en tête du bassin versant. Il traverse principalement des prairies et quelques secteurs forestiers.

Sur le site d'étude, le Ronzeau mesure 1,1 m de large. Les faciès d'écoulement sont assez diversifiés, avec une alternance de radiers et de plats courants / lentiques. Les pierres dominent près de 70% de recouvrement du lit mineur de la station puis le sable occupe les zones plus lentiques (20%). Six substrats marginaux viennent diversifier les potentialités d'accueil de la macrofaune benthique.



Figure 4 : Localisation et prise de vue du Ronzeau à Aigueperse (04410053)

VI.1.1.2 Analyse de l'eau

Le tableau ci-dessous reprend l'ensemble des paramètres analysés sur cette station.

D'après l'arrêté du 27 juillet 2018, la qualité des paramètres physico-chimiques est majoritairement très bonne exceptée pour quelques paramètres où l'état est bon ponctuellement (COD, O2, Ptot).

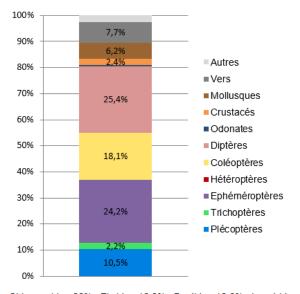
Ainsi, sur l'année 2022, **l'état physico-chimique est bon** sur le Ronzeau à Aigueperse.

On observe une conductivité en classe de qualité moyenne selon le SEQ-Eau. Les valeurs mesurées ne reflètent pas de perturbation, ils indiquent une faible minéralisation de l'eau sur ce petit ruisseau.

Tableau 3 : Classe de qualité des paramètres physico-chimiques analysés sur le Ronzeau à Aiqueperse (04410053)

		RONZEAU A AIGUEPERSE 4410053					
		24/02/2022	13/04/2022	28/06/2022	16/08/2022	26/10/2022	20/12/2022
		LSE2202-33493	LSE2204-6560	LSE2206-7613	LSE2208-11798	LSE2210-7268	LSE2212-9563
Arrêté du 27/07/2018							
Température de l'eau	°C	7,2	10,0	14,7	15,3	11,9	7,6
pH sur le terrain	-	7,6	7,6	7,2	6,9	7,3	7,2
Oxygénation :							
Oxygène dissous	mg/I O2	11,5	11,2	9,4	8,1	9,8	11,3
Taux de saturation en oxygène	%	99,3	104,3	97,0	86,2	95,2	99,0
Demande Biochimique en Oxygène (Di	mg/l O2	0,6	1,5	1,2	0,8	0,9	1,2
Carbone organique dissous (COD)	mg/I C	2,7	3,0	5,3	4,2	5,3	3,6
Nutriments :							
Orthophosphates	mg/l PO4	0,05	0,06	0,08	0,09	0,06	0,05
Phosphore total	mg/l P	0,028	0,034	0,051	0,037	0,025	0,017
Ammonium	mg/l NH4+	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Nitrites	mg/l NO2-	<0,01	0,01	0,02	0,02	<0,01	0,01
Nitrates	mg/l NO3-	7	6	3	3	6	10
SEQ-Eau							
Azote Kjeldahl	mg/l N	0,71	<0,5	0,86	<0,5	<0,5	<0,5
Conductivité brute	μS/cm	76	78	108	164	116	96
Matières en suspension totales	mg/l	13	12	10	<2,0	3	6
Turbidité	NFU	9,5	11,0	7,8	1,9	3,0	5,1
Autres:							
Température de l'air extérieur	°C	6,3	14	15,7	22,7	14,7	14,1
Débit instantané	m3/s	0,106	0,063	0,022	0,002	0,01	0,035

VI.1.1.3 Peuplement de macro-invertébrés


Le peuplement macrobenthique du Ronzeau à Aigueperse est bien équilibré et bien diversifié. Six ordres taxonomiques ont des abondances supérieures à 5%. La communauté se compose principalement de diptères Chironomidae (22%), de coléoptères Elmidae (12,6%), d'éphéméroptères Baetidae (12,6%), de plécoptères Leuctridae (9,9%) et de vers Oligochètes (7,5%). Ces organismes reflètent l'équilibre de la structure trophique du peuplement.

A noter la présence de l'écrevisse de « Californie », Pacifastacus leniusculus. Cette espèce, introduite en France vers le milieu des années 1970, est susceptible de provoquer des déséquilibres biologiques (R432-5 du CE).

Selon l'Arrêté du 27/07/2018, **l'état biologique est très bon sur le Ronzeau à Aigueperse** avec un I2M2 de 0,745/1. Toutes les métriques constitutives de l'indice sont satisfaisantes avec une valeur la plus élevée pour l'ASPT, reflétant une bonne polluosensibilité du peuplement.

L'équivalent-IBGN traduit un bon état biologique selon l'Arrêté du 27/07/2015, avec une note de 16/20.

Figure 5 : Distribution taxonomique du Ronzeau à Aigueperse (04410053)

Chironomidae 22% ; Elmidae 16,8% ; Baetidae 12,6% ; Leuctridae 9,9% ; OLIGOCHETES 7,5%

La variété taxonomique est assez bonne (classe 10/14) et le groupe indicateur est polluorésistant (GI 7/9, Leuctridae). La note est robuste puisque le GI 7 est confirmé par les éphéméroptères Leptophlebiidae. A souligner

la présence d'un individu du GI 9/9, le plécoptère Perildae. Il ne peut pas être pris en compte dans le calcul de l'indice car un minimum de 3 individus est nécessaire.

INDICES BIOLOGIQUES – LE RONZEAU A AIGUEPERSE (04410053)						
I₂M₂ et état biologique	•	IBG-DCE				
I_2M_2	0,745	Nombre de taxons :	36			
Etat biologique(Arrêté du 27/07/18)	Très bon	Classe de variété (/14) :	10			
.		Groupe Faunistique Indicateur (/9):	7			
Nb taxons contributifs	53	Taxon Indicateur :	Leuctridae			
Métriques en EQR		Equivalent I.B.G.N. / 20 :	16			
Indice de Shannon	0,799	•	TP3			
ASPT	0,862	Taille du cours d'eau /HER /EQR				
Polyvoltinisme	0,696	Etat biologique (Arrêté du 27/07/2015)	Bon			
Ovoviviparité	0,709	Robustesse (/20):	16			
Richesse taxonomique	0,643	Taxon indicateur robustesse	Leptophlebiio			

Figure 6 : Résultats biologiques I2M2 et IBG-DCE sur le Ronzeau à Aigueperse (04410053)

La figure ci-dessous montre qu'aucune pression significative n'est mise en évidence par le modèle statistique de l'outil diagnostique.

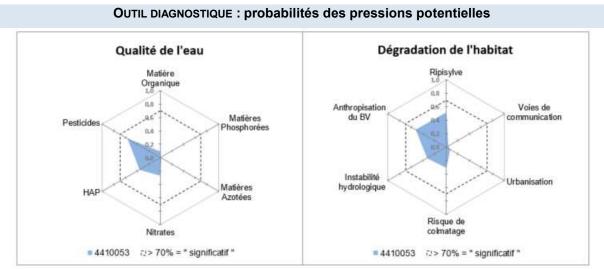


Figure 7 : Outil diagnostique sur le Ronzeau à Aigueperse (04410053)

VI.1.1.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Ronzeau à Aigueperse.

Tableau 4 : Synthèse des résultats physico-chimiques et biologiques sur le Ronzeau à Aigueperse (04410053)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio 12M2	logique IBG-DCE	Etat écologique
04410053	Très bon	Très bon	Bon	Bon	Bon	Très bon	Bon	Bon

VI.1.2 Le Sornin à Aigueperse (04410017)

VI.1.2.1 <u>Description de la station</u>

Le Sornin à Aigueperse est situé en amont du bassin versant. Il traverse principalement des zones de prairies, et quelques secteurs forestiers. Cette partie du Sornin s'écoule depuis St-Igny-de-Vers.

La largeur moyenne du Sornin est de 2,4 m sur cette station. La ripisylve est plutôt clairsemée, avec un ensoleillement assez important. La granulométrie est grossière (62% de pierres) et les vitesses d'écoulement sont variées. De nombreux substrats minoritaires offrent une hétérogénéité de niches écologiques pour les invertébrés benthiques.

Figure 8 : Localisation et prise de vue du Sornin à Aigueperse (04410017)

VI.1.2.2 Analyse de l'eau

Le tableau ci-dessous présente l'ensemble des paramètres analysés sur cette station.

Tableau 5 : Classe de qualité des paramètres physico-chimiques analysés sur le Sornin à Aigueperse (04410017)

					0017		
		24/02/2022	13/04/2022	28/06/2022	16/08/2022	26/10/2022	20/12/2022
		LSE2202-33487	LSE2204-6554	LSE2206-7607	LSE2208-11792	LSE2210-7262	LSE2212-9557
Arrêté du 27/07/2018							
Température de l'eau	°C	6,2	9,8	15,5	17,3	12,3	7,9
pH sur le terrain	-	7,4	7,8	7,5	7,3	7,5	7,3
<u>Oxygénation :</u>							
Oxygène dissous	mg/l O2	11,8	11,1	9,5	8,9	10,2	11,6
Taux de saturation en oxygène	%	99,1	102,1	100,2	97,2	99,1	101,5
Demande Biochimique en Oxygène (D	mg/l O2	0,8	1,4	4,0	1,4	1,0	1,6
Carbone organique dissous (COD)	mg/I C	2,7	3,2	5,6	6,3	5,8	3,9
Nutriments :							
Orthophosphates	mg/l PO4	0,05	0,06	0,19	0,13	0,07	0,09
Phosphore total	mg/l P	0,029	0,043	0,130	0,078	0,035	0,041
Ammonium	mg/l NH4+	<0,05	0,31	<0,05	0,05	<0,05	0,06
Nitrites	mg/l NO2-	0,01	0,03	0,06	0,03	0,03	0,06
Nitrates	mg/l NO3-	8	7	4	3	5	10
SEQ-Eau							
Azote Kjeldahl	mg/l N	0,77	<0,5	1,20	0,77	<0,5	<0,5
Conductivité brute	μS/cm	83	91	121	142	123	107
Matières en suspension totales	mg/l	12	11	18	5	4	5
Turbidité	NFU	8,5	8,8	18,0	4,3	4,0	4,8
Autres :							
Température de l'air extérieur	°C	6,1	14	19,6	25,3	15,1	13,1
Débit instantané	m3/s	0,466	0,251	0,065	0,005	0,047	0,118

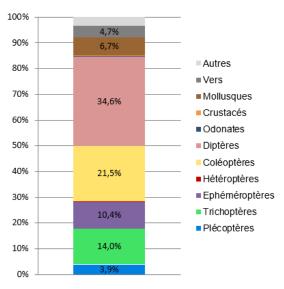
Page 24 sur 89

D'après l'arrêté du 27 juillet 2018, les classes de qualité des paramètres physico-chimiques sont majoritairement très bonnes. En période estivale (juin et août), on observe une légère hausse en composés phosphorés et en carbone organique dissous (COD), toutefois les concentrations sont en bon état.

Ainsi, sur l'année 2022, l'état physico-chimique est bon sur le Sornin à Aigueperse.

Selon le SEQ-Eau, la conductivité est parfois en classe de qualité moyenne. Les valeurs mesurées ne reflètent pas de perturbation, ils indiquent une faible minéralisation de l'eau sur ce cours d'eau.

VI.1.2.3 Peuplement de macro-invertébrés


Le peuplement macrobenthique du Sornin à Aigueperse est principalement dominé par les diptères Chironomidae et les coléoptères Elmidae. Les premiers sont des organismes ubiquistes, capables de supporter des eaux polluées. Les seconds vivent principalement sous les pierres des eaux courantes.

Selon l'Arrêté du 27/07/2018, le **très bon** état biologique est atteint sur le Sornin à Aigueperse avec un I2M2 de 0,753/1. Toutes les métriques constitutives de l'indice sont bonnes. Elles reflètent un peuplement très bien diversifié et la polluosensibilité est satisfaisante.

L'équivalent-IBGN est en accord avec l'I2M2 puisque la note de 18/20 permet également de valider le très bon état biologique selon l'Arrêté du 27/07/2015. La variété taxonomique est bonne (classe 11/14) et le GI 8/9 est validé par les trichoptères Brachycentridae.

Le calcul de la robustesse fait perdre un point à l'indice car c'est le GI 7 qui est validé secondairement.

Figure 9 : Distribution taxonomique du Sornin à Aigueperse (04410017)

Chironomidae 29,2% ; Elmidae 20,5% ; Baetidae 7,4% ; Hydrobiidae 4,6% ; Simuliidae 4,6%

Néanmoins, deux individus Perildae du GI 9/9 ont été contactés. Ils ne peuvent pas être pris en compte dans le calcul de l'indice car un minimum de 3 individus est nécessaire.

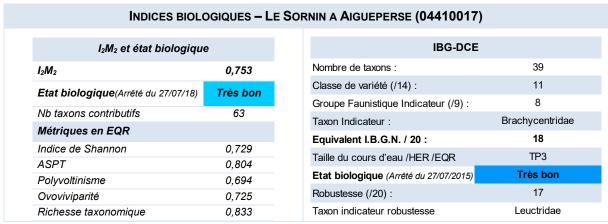


Figure 10 : Résultats biologiques I2M2 et IBG-DCE sur le Sornin à Aigueperse (04410017)

Ci-dessous, l'outil diagnostique ne révèle aucune pression significative sur les communauté macrobenthique du Sornin à Aigueperse.

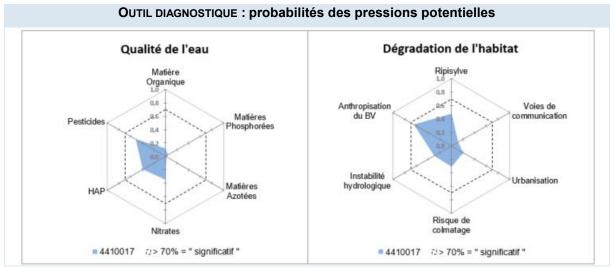


Figure 11 : Outil diagnostique sur le Sornin à Aigueperse (04410017)

VI.1.2.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Sornin à Aigueperse.

Tableau 6 : Synthèse des résultats physico-chimiques et biologiques sur le Sornin à Aigueperse (04410017)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio	logique IBG-DCE	Etat écologique
04410017	Très bon	Très bon	Bon	Bon	Bon	Très bon	Très bon	Bon

VI.1.3 Le Sornin à Saint-Igny-de-Vers 2 (04410015)

VI.1.3.1 <u>Description de la station</u>

Le Sornin à Saint-Igny-de-Vers 2 est situé en amont du bassin versant. Il s'écoule sur un environnement prairial entouré de quelques zones forestières. Cette partie du Sornin s'écoule depuis la commune de Propières et traverse quelques bourgs et habitations isolés. Une petite retenue d'eau est située en amont de la station.

La largeur moyenne du Sornin est de 3,4 m sur cette station. La ripisylve est assez dense, limitant l'ensoleillement. Les pierres dominent 70% de la station sur des alternances de radiers et de plats courants et plats lentiques. Les supports marginaux sont variés, offrant une hétérogénéité de zones de refuges et de nourriture pour la macrofaune benthique.

Figure 12 : Localisation et prise de vue du Sornin à Saint-Igny-de-Vers 2 (04410015)

VI.1.3.2 Analyse de l'eau

Le tableau ci-dessous présente l'ensemble des paramètres analysés sur cette station.

Tableau 7 : Classe de qualité des paramètres physico-chimiques analysés sur le Sornin à Saint-Igny-de-Vers 2 (04410015)

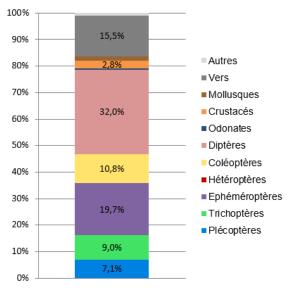
			R S		Γ-IGNY-DE-VER	S 2	
		0.4 /0.0 /0.000			0015	0.5/4.0/0.000	00/10/0000
		24/02/2022 LSE2202-33486	13/04/2022 LSE2204-6553	28/06/2022 LSE2206-7606	16/08/2022 LSE2208-11791	26/10/2022 LSE2210-7261	20/12/2022 LSE2212-9556
Arrêté du 27/07/2018		LSE2202-33486	LSE2204-6553	LSE2206-7606	LSE2208-11791	LSE2210-7261	LSE2212-9556
Température de l'eau	°C	6,3	10,8	16,4	18,8	13,2	6,7
pH sur le terrain	-	7,5	7,8	7,3	7,2	7,5	7,3
Oxygénation :	<u> </u>	,			,	,	,
Oxygène dissous	mg/l O2	11,9	11,4	9,1	8,4	9,7	11,9
Taux de saturation en oxygène	%	91,6	107,4	97,4	94,7	96,5	101,4
Demande Biochimique en Oxygène	(DE mg/l O2	<0,5	1,3	1,1	1,9	0,9	1,1
Carbone organique dissous (COD)	mg/I C	2,0	2,6	4,6	5,6	5,1	2,9
Nutriments :					-		
Orthophosphates	mg/l PO4	0,06	0,04	0,15	0,10	0,07	0,06
Phosphore total	mg/l P	0,028	0,031	0,084	0,078	0,044	0,025
Ammonium	mg/l NH4+	<0,05	<0,05	0,08	<0,05	<0,05	<0,05
Nitrites	mg/l NO2-	0,01	0,02	0,05	0,04	0,04	0,02
Nitrates	mg/l NO3-	9	8	4	3	5	10
SEQ-Eau							
Azote Kieldahl	mg/l N	<0,5	<0,5	0,76	<0,5	<0,5	<0,5
Conductivité brute	μS/cm	88	92	112	124	123	107
Matières en suspension totales	mg/l	8	10	27	8	7	6
Turbidité	NFU	7,8	8,1	22,0	7,0	7,3	6,3
Autres :							
Température de l'air extérieur	°C	6,4	17	17,5	24,5	14,8	14,3
Débit instantané	m3/s	0,764	0,406	0,138	0,027	0,099	0,204

D'après l'arrêté du 27 juillet 2018, les paramètres analysés sont majoritairement en très bon état, excepté en juin et août où les composés phosphorés sont en bon état, et en août et octobre où le COD devient bon. Ainsi, sur l'année 2022, **l'état physico-chimique est bon** sur le Sornin à Saint-Igny-de-Vers 2.

Selon le SEQ-Eau, on note une assez faible conductivité de l'eau (état moyen) et les matières en suspension (MES) sont en classe moyenne lors de la campagne de juin.

VI.1.3.3 Peuplement de macro-invertébrés

Le peuplement macrobenthique du Sornin à Saint-Igny-de-Vers est bien diversifié et relativement bien équilibré.


Les organismes polluorésistants dominent (Chironomidae 27,7% et Oligochètes 14,6%), néanmoins les plécoptères polluosensibles Leuctridae représentent 7% des effectifs.

A noter la présence de l'écrevisse de « Californie », Pacifastacus leniusculus. Cette espèce, introduite en France vers le milieu des années 1970, est susceptible de provoquer des déséquilibres biologiques (R432-5 du CE).

Selon l'Arrêté du 27/07/2018, **l'état biologique est très bon sur le Sornin à Aigueperse** avec un I2M2 de 0,712/1. Toutes les métriques sont satisfaisantes, notamment l'ASPT traduisant un bonne polluosensibilité des taxons.

L'équivalent-IBGN est de 17/20, correspondant au bon état biologique selon l'Arrêté du 27/07/2015. La variété taxonomique est bonne (classe 11/14) et le GI 7/9 est validé par les Leuctridae. La note est robuste puisque le GI 7 est confirmé par les trichoptères Glossosomatidae.

Figure 13 : Distribution taxonomique du Sornin à Saint-Igny-de-Vers 2 (04410015)

Chironomidae 27,7%; OLIGOCHETES 14,6%; Baetidae 10,9%; Elmidae 10,1%; Leuctridae 7%

A souligner la présence d'organismes du GI 8/9 (Brachycentridae) mais ces derniers ne sont pas suffisamment abondants au sein des phases de prélèvements A et B pour être pris en compte dans le calcul de l'indice (3 ind. minimum).

INDICES BIOLOGIQUES – LE SORNIN A SAINT-IGNY-DE-VERS (04410015)									
l₂M₂ et état biologiq	ue		IBG-DCE						
I_2M_2	0,712		Nombre de taxons :	39					
Etat biologique(Arrêté du 27/07/18,	Très bon		Classe de variété (/14) :	11					
Etat biologique(Affete du 27/07/16)			Groupe Faunistique Indicateur (/9) :	7					
Nb taxons contributifs	56		Taxon Indicateur :	Leuctridae					
Métriques en EQR			Equivalent I.B.G.N. / 20 :	17					
Indice de Shannon	0,581		•						
ASPT	0,876		Taille du cours d'eau /HER /EQR	TP3					
Polyvoltinisme	0,638		Etat biologique (Arrêté du 27/07/2015)	Bon					
Ovoviviparité	0,758		Robustesse (/20):	17					
Richesse taxonomique	0,667		Taxon indicateur robustesse	Glossosomatidae					

Figure 14 : Résultats biologiques I2M2 et IBG-DCE sur le Sornin à Saint-Igny-de-Vers 2 (04410015)

L'outil diagnostique, développé en complément de l'I2M2, indique que statistiquement, il est probable que les pesticides (p=74%) et l'anthropisation du bassin versant (p=78%) soient des pressions exercées sur le peuplement macrobenthique du Sornin à Saint-Igny-de-Vers.

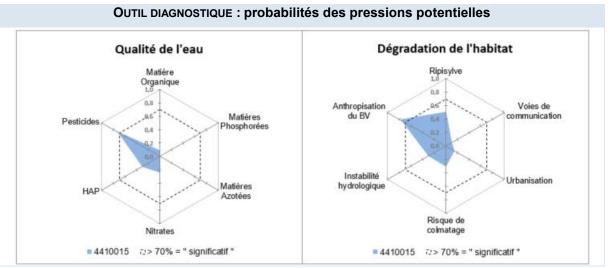


Figure 15 : Outil diagnostique sur le Sornin à Saint-Igny-de-Vers 2 (04410015)

VI.1.3.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Sornin à Saint-Igny-de-Vers.

Tableau 8 : Synthèse des résultats physico-chimiques et biologiques sur le Sornin à Saint-Igny-de-Vers 2 (04410015)

code	Température	Hq	Oxygénation	Nutriments	Etat physico-	Etat bio	logique	Etat
station	remperature	ρ	охуденицен	reach mileties	chimique	12M2	IBG-DCE	écologique
04410015	Très bon	Très bon	Bon	Bon	Bon	Très bon	Bon	Bon

VI.1.4 Le Sornin à La-Chapelle-sous-Dun (04410047)

VI.1.4.1 <u>Description de la station</u>

Le Sornin à La-Chapelle-sous-Dun est situé en partie intermédiaire du bassin versant. Il traverse principalement des prairies, et quelques habitations isolées. La ripisylve permet un faible ensoleillement. Le Sornin mesure 5 m de large sur ce secteur. On retrouve une granulométrie grossière (40% de pierres) sur les faciès lotiques et une granulométrie plus fine sur les faciès lentiques (30% de sables). Plusieurs substrats minoritaires diversifient les zones d'habitats pour les invertébrés benthiques (bryophytes, racines, blocs, graviers).

Figure 16: Localisation du Sornin à La-Chapelle-sous-Dun (04410047)

VI.1.4.2 Analyse de l'eau

Le tableau ci-dessous présente l'ensemble des paramètres analysés sur cette station.

Tableau 9 : Classe de qualité des paramètres physico-chimiques analysés sur le Sornin à La-Chapelle-sous-Dun (04410047)

		SO	RNIN A LA CHA	PELLE-SOUS-D	UN		
			4410	0047			
	24/02/2022	13/04/2022	28/06/2022	16/08/2022	26/10/2022	20/12/2022	
	LSE2202-33494	LSE2204-6561	LSE2206-7614	LSE2208-11799	LSE2210-7269	LSE2212-9564	
°C	5,6	11,5	17,5	21,0	14,4	8,5	
-	7,6	8,3	7,4	7,4	7,6	7,2	
mg/I O2	12,1	11,9	9,2	8,8	9,9	11,7	
%	98,7	112,6	99,7	103,1	99,3	102,8	
mg/l O2	0,6	1,1	1,1	1,7	0,7	1,2	
mg/I C	2,4	3,2	6,0	7,1	5,8	3,8	
			-				
mg/l PO4	0,07	0,07	0,22	0,25	0,17	0,09	
mg/l P	0,037	0,061	0,151	0,145	0,077	0,044	
mg/l NH4+	<0,05	<0,05	<0,05	0,07	<0,05	<0,05	
mg/l NO2-	0,01	0,02	0,05	0,08	0,02	0,03	
mg/l NO3-	9	7	5	6	6	12	
mg/l N	<0,5	<0,5	0,97	0,91	<0,5	<0,5	
μS/cm	92	96	124	148	134	115	
mg/l	16	28	30	7	<2,0	7	
NFU	11,0	13,0	27,0	5,5	7,8	5,5	
°C	5,1	18	22,8	29,6	19,5	14,9	
m3/s	2,234	1,073	0,315	0,048	0,243	0,757	
	mg/I O2 % mg/I O2 mg/I O2 mg/I PO4 mg/I P mg/I NH4+ mg/I NO2- mg/I NO3- mg/I N µS/cm mg/I NFU	SE2202-33494 °C 5,6 - 7,6 mg/l O2 12,1 % 98,7 mg/l O2 0,6 mg/l C 2,4 mg/l PO4 0,07 mg/l P 0,037 mg/l NH4+ <0,05 mg/l NO2- 0,01 mg/l NO3- 9 mg/l NO3- 9 mg/l N <0,5 μS/cm 92 mg/l NFU 11,0 °C 5,1	24/02/2022 13/04/2022 LSE2202-33494 LSE2204-6561 °C 5,6 11,5 - 7,6 8,3 mg/I O2 12,1 11,9 % 98,7 112,6 Emg/I O2 0,6 1,1 mg/I C 2,4 3,2 mg/I PO4 0,07 0,07 mg/I P 0,037 0,061 mg/I NH4+ <0,05 <0,05 mg/I NO2- 0,01 0,02 mg/I NO3- 9 7 mg/I NO3- 9 7 mg/I NFU 11,0 13,0	441(24/02/2022 13/04/2022 28/06/2022 ISE2202-33494 ISE2204-6561 ISE2206-7614 °C 5,6 11,5 17,5 - 7,6 8,3 7,4 mg/I O2 12,1 11,9 9,2 % 98,7 112,6 99,7 mg/I O2 0,6 1,1 1,1 mg/I C 2,4 3,2 6,0 mg/I PO4 0,07 0,07 0,22 mg/I P 0,037 0,061 0,151 mg/I NH4+ <0,05 <0,05 <0,05 mg/I NO2- 0,01 0,02 0,05 mg/I NO3- 9 7 5 mg/I N <0,5 <0,5 0,97 μS/cm 92 96 124 mg/I NFU 11,0 13,0 27,0	4410047 24/02/2022 13/04/2022 28/06/2022 16/08/2022 ISE2202-33494 ISE2204-6561 ISE2206-7614 ISE2208-11799 °C 5,6 11,5 17,5 21,0 - 7,6 8,3 7,4 7,4 mg/I O2 12,1 11,9 9,2 8,8 % 98,7 112,6 99,7 103,1 Emg/I O2 0,6 1,1 1,1 1,7 mg/I C 2,4 3,2 6,0 7,1 mg/I PO4 0,07 0,07 0,22 0,25 mg/I P 0,037 0,061 0,151 0,145 mg/I NH4+ <0,05	24/02/2022 13/04/2022 28/06/2022 16/08/2022 26/10/2022	

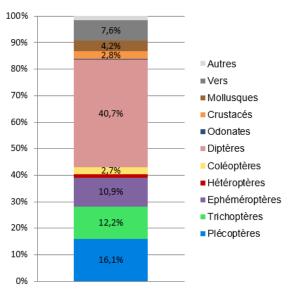
D'après l'arrêté du 27 juillet 2018, sur l'année 2022, **l'état physico-chimique du Sornin à La-Chapelle-sous-Dun est bon** malgré un état moyen pour le COD en août (cf. paragraphe V.4, condition du § 2.2 de l'annexe 2 de l'Arrêté du 27/07/2018).

En période d'étiage, lors des campagnes de juin, août et octobre, on observe une augmentation des concentrations en composés phosphorés et du COD (passage du très bon état au bon état (voire moyen pour le COD en août)).

Selon le SEQ-Eau, la conductivité est parfois en classe de qualité moyenne. Les valeurs mesurées reflètent une faible minéralisation de l'eau sur ce cours d'eau. On note également un taux de MES un peu élevé (classe moyenne) en avril et juin.

VI.1.4.3 Peuplement de macro-invertébrés

Le peuplement macrobenthique du Sornin à La Chapellesous-Dun est bien diversifié. Il se compose principalement de diptères Chironomidae (34,2%), organismes ubiquistes et polluorésistants, et de plécoptères Leuctridae (16,1%) polluosensibles.


A noter la présence de l'écrevisse invasive *Pacifastacus leniusculus*.

Selon l'Arrêté du 27/07/2018, **l'état biologique est très bon sur le Sornin à La Chapelle-sous-Dun** avec un l2M2 de 0,681/1. Toutes les métriques constitutives de l'indice sont satisfaisantes.

L'équivalent-IBGN traduit également un très bon état biologique selon l'Arrêté du 27/07/2015, avec une note de 18/20. La variété taxonomique est bonne (classe 11/14) et le GI 8/9 est validé par les organismes polluosensibles Brachycentridae.

La robustesse perd un point car c'est le GI 7/9 qui est validé secondairement par les Leuctridae.

Figure 17 : Distribution taxonomique du Sornin à La-Chapelle-sous-Dun (04410047)

Chironomidae 34,2%; Leuctridae 16,1%; Hydropsychidae 9,2%; OLIGOCHETES 7,4%; Simuliidae 6,1%

INDICES BIOLOGIQUES - LE SORNIN A LA CHAPELLE-SOUS-DUN (04410047) **IBG-DCE** I₂M₂ et état biologique Nombre de taxons : 39 I_2M_2 0,681 11 Classe de variété (/14) : Etat biologique (Arrêté du 27/07/18) Très bon Groupe Faunistique Indicateur (/9): 8 Nb taxons contributifs 58 Taxon Indicateur: Brachycentridae Métriques en EQR 18 Equivalent I.B.G.N. / 20: Indice de Shannon 0,588 TP3 Taille du cours d'eau /HER /EQR ASPT 0.715 Très bon Etat biologique (Arrêté du 27/07/2015) Polyvoltinisme 0,591 Robustesse (/20): 17 Ovoviviparité 0,736 Leuctridae 0,786 Taxon indicateur robustesse Richesse taxonomique

Figure 18 : Résultats biologiques I2M2 et IBG-DCE sur le Sornin à La-Chapelle-sous-Dun (04410047)

Selon le modèle statistique de l'outil diagnostique, les probabilités de pressions les plus élevées sont liées aux pesticides (p=83%) et à l'anthropisation du bassin versant (p=74%).

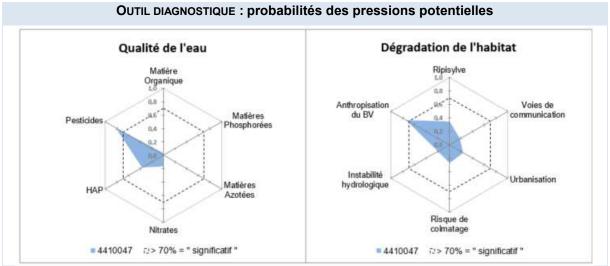


Figure 19 : Outil diagnostique sur le Sornin à La-Chapelle-sous-Dun (04410047)

VI.1.4.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Sornin à La-Chapelle-sous-Dun.

Tableau 10 : Synthèse des résultats physico-chimiques et biologiques sur le Sornin à La-Chapelle-sous-Dun (04410047)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio	logique IBG-DCE	Etat écologique
04410047	Bon	Bon	Moyen	Bon	Bon	Très bon	Très bon	Bon

VI.1.5 La Genette à La Clayette (04015025)

VI.1.5.1 <u>Description de la station</u>

La Genette est un affluent rive droite du Sornin. La station est située juste en amont de la confluence. Ce ruisseau s'écoule sur un environnement prairial sur sa partie amont où quelques retenues sont présentes puis traverse la ville de La Clayette où se trouve un plan d'eau. La station est située en aval d'une zone urbaine, la Genette mesure 3,3 m de large, l'ensoleillement est moyen avec une ripisylve plutôt clairsemée.

Les écoulements sont diversifiés et principalement lotiques. L'habitat se compose essentiellement de surfaces uniformes dures, peu propice à l'accueil de la macrofaune benthique. Plusieurs substrats minoritaires sont toutefois biogènes (bryophytes, racines, pierres).

Figure 20 : Localisation de la Genette à La Clayette (04015025)

VI.1.5.2 Analyse de l'eau

Le tableau ci-dessous reprend l'ensemble des paramètres analysés sur cette station.

Tableau 11 : Classe de qualité des paramètres physico-chimiques analysés sur la Genette à La Clayette (04015025)

022 20/12/2022 7256 LSE2212-9551 5,4							
7256 LSE2212-9551							
7256 LSE2212-9551							
5,4							
5,4							
7,7							
12,4							
101,4							
3,0							
9,1							
0,04							
0,041							
0,11							
0,04							
3							
1,30							
151							
11							
7,7							
14,5							

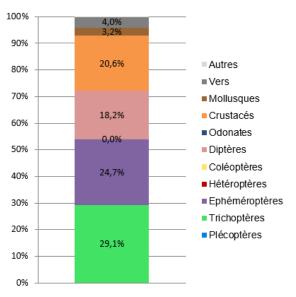
Page **33** sur **89**

D'après l'arrêté du 27 juillet 2018, sur l'année 2022, **l'état physico-chimique de la Genette à La Clayette est moyen** en raison d'un **déclassement du paramètre COD** en août et en décembre.

Les autres paramètres sont en bonne ou très bonne qualité. Les composés phosphorés passent du très bon au bon état d'avril à octobre, lorsque les débits sont les plus faibles.

Pour les paramètres évalués selon le SEQ-Eau, on constate un taux de MES un peu élevé en août (classe moyenne).

VI.1.5.3 Peuplement de macro-invertébrés


Le peuplement macrobenthique de la Genette à La Clayette est peu diversifié. Les organismes polluorésistants dominent (Hydropsychidae 28,8%, Baetidae 14,9%, Gammaridae 12,6%, Chironomidae 12,5%).

Selon l'Arrêté du 27/07/2018, **l'état biologique de la Genette à La Clayette est médiocre** avec un I2M2 de 0,193/1. Toutes les métriques sont très faibles excepté l'indice de Shannon, reflétant l'équilibre dans la répartition des taxons. Le polyvoltinisme est la métrique la plus basse. Les taxons à cycle court sont favorisés dans le peuplement lorsque celui-ci subit des perturbations environnementales et anthropiques fortes.

L'équivalent-IBGN traduit un état biologique moyen selon l'Arrêté du 27/07/2015 avec une note de 14/20. La variété taxonomique est moyenne (classe 8/14) et le GI 7/9 est validé par les plécoptères Leuctridae. Seulement 6 individus ont été contactés.

L'indice n'est pas robuste et perd 4 points lors du calcul de la robustesse car c'est seulement le GI 4/9 qui est validé secondairement par les Rhyacophilidae.

Figure 21 : Distribution taxonomique de la Genette à La Clayette (04015025)

Hydropsychidae 28,8%; Baetidae 14,9%; Gammaridae 12,6%; Chironomidae 12,5%; Ephemerellidae 9,9%

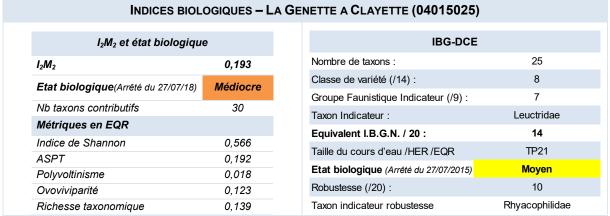


Figure 22 : Résultats biologiques I2M2 et IBG-DCE sur la Genette à La Clayette (04015025)

Selon l'outil diagnostique, plusieurs probabilités sont élevées. Les pressions potentielles peuvent à la fois être liées à la qualité de l'eau (pesticides, HAP, nitrates) et à la dégradation de l'habitat (anthropisation du bassin versant, urbanisation, risque de colmatage, instabilité hydrologique).

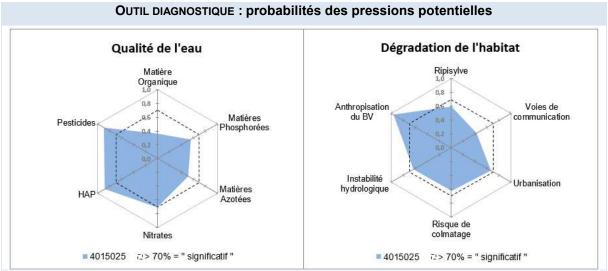


Figure 23 : Outil diagnostique sur la Genette à La Clayette (04015025)

VI.1.5.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur la Genette à La Clayette.

Tableau 12 : Synthèse des résultats physico-chimiques et biologiques sur la Genette à La Clayette (04015025)

code	Température	рН	Oxygénation	Nutriments	Etat physico-		logique	Etat
station					chimique	12M2	IBG-DCE	écologique
04015025	Bon	Bon	Moyen	Bon	Moyen	Médiocre	Moyen	Médiocre

VI.1.6 Le Ruisseau des Barres à Saint-Laurent-en-Brionnais (04410031)

VI.1.6.1 <u>Description de la station</u>

Le Ruisseau des Barres est un affluent rive droite du Sornin. La station est située en partie médiane du ruisseau, traversant principalement des prairies. Il mesure 4 m de large, l'ensoleillement est moyen avec une ripisylve assez clairsemée. Le faciès de type plat lentique domine 80% de la station, accompagné de quelques radiers. Les pierres et le sable sont les substrats majoritaires. Puis divers substrats minoritaires offrent une hétérogénéité de niches écologiques pour les invertébrés.

Figure 24 : Localisation du Ruisseau des Barres à Saint-Laurent-en-Brionnais (04410031)

VI.1.6.2 Analyse de l'eau

Le tableau ci-dessous reprend l'ensemble des paramètres analysés sur cette station.

Tableau 13 : Classe de qualité des paramètres physico-chimiques analysés sur le Ruisseau des Barres (04410031)

			RUISSEAU DE	S BARRES A SAI	NT LAURENT E	N BRIONNAIS	
				4410	0031		
		24/02/2022	13/04/2022	28/06/2022	16/08/2022	26/10/2022	20/12/2022
		LSE2202-33489	LSE2204-6556	LSE2206-7609	LSE2208-11794	LSE2210-7264	LSE2212-9559
Arrêté du 27/07/2018							
Température de l'eau	°C	6,9	14,3	16,8	19,4	13,5	9,4
pH sur le terrain	-	8,2	8,4	7,9	8,0	8,1	8,1
Oxygénation :							
Oxygène dissous	mg/l O2	11,4	11,9	8,5	7,6	8,4	10,1
Taux de saturation en oxygène	%	95,8	119,3	91,2	86,0	83,2	91,3
Demande Biochimique en Oxygène (D	mg/l O2	0,6	1,8	1,4	1,4	1,4	1,9
Carbone organique dissous (COD)	mg/I C	2,3	2,5	4,5	1,9	2,6	2,4
Nutriments :							
Orthophosphates	mg/l PO4	0,07	0,12	0,18	0,09	0,09	0,12
Phosphore total	mg/l P	0,042	0,061	0,146	0,072	0,066	0,054
Ammonium	mg/l NH4+	<0,05	<0,05	0,12	0,06	<0,05	<0,05
Nitrites	mg/l NO2-	0,02	0,04	0,13	0,08	0,09	0,06
Nitrates	mg/l NO3-	14	14	16	14	14	17
SEQ-Eau							
Azote Kjeldahl	mg/l N	0,84	0,50	1,10	<0,5	<0,5	<0,5
Conductivité brute	μS/cm	432	437	447	489	495	475
Matières en suspension totales	mg/l	15	23	65	13	15	11
Turbidité	NFU	15	19	54	15	15	18
Autres :							
Température de l'air extérieur	°C	1,3	18	22,6	29,8	20,6	14,8
Débit instantané	m3/s	0,155	0,061	0,082	0,015	0,02	0,034

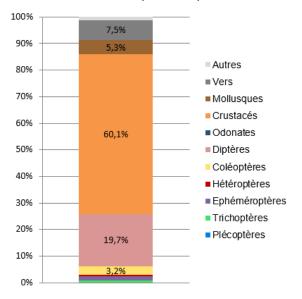
Selon l'arrêté du 27 juillet 2018, la qualité des paramètres physico-chimiques est bonne ou très bonne. Ainsi, sur l'année 2022, **l'état physico-chimique est bon** sur le Ruisseau des Barres.

En juin, on constate que les concentrations en nutriments sont les plus élevées mais restent en bon état.

D'après le SEQ-Eau, lors de cette campagne, le taux de MES et la turbidité sont élevés, avec respectivement des classes de qualité mauvaise et moyenne.

VI.1.6.3 Peuplement de macro-invertébrés

Le peuplement macrobenthique du ruisseau des Barres est déséquilibré par une forte abondance de Gammaridae (60%). Ces crustacés sont détritivores de matières organiques grossières, friands de litières et de racines.


A noter la présence de l'écrevisse américaine *Orconectes limosus*. Cette espèce, introduite en Europe vers 1880, est susceptible de provoquer des déséquilibres biologiques (R432-5 du CE).

Selon l'Arrêté du 27/07/2018, **l'état biologique est moyen sur le Ruisseau des Barres** avec un I2M2 de 0,406/1. La métrique de la richesse taxonomique est bonne, néanmoins le déséquilibre des Gammaridae impacte les autres métriques, notamment l'indice de Shannon.

L'équivalent-IBGN traduit quant à lui un bon état biologique selon l'Arrêté du 27/07/2015 avec une note de 16/20. La variété taxonomique est bonne (classe 11/14) et c'est le GI 6/9 qui est validé par les Ephemeridae.

La robustesse perd un point car c'est le GI 5 qui est validé secondairement par les trichoptères Hydroptilidae.

Figure 25 : Distribution taxonomique du Ruisseau des Barres (04410031)

Gammaridae 59,9% ; Chironomidae 19% ; OLIGOCHETES 5,9% ; Hydrobiidae 5% ; Elmidae 3,1%

A noter la présence de 3 individus Leuctridae (GI 7/9) dans les prélèvements de la phase C (non pris en compte dans le calcul de l'indice).

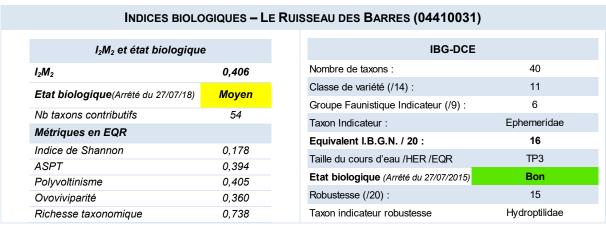


Figure 26 : Résultats biologiques I2M2 et IBG-DCE sur le Ruisseau des Barres (04410031)

Selon le modèle statistique de l'outil diagnostique, développé en complément de l'I2M2, les pressions probables sont diverses. Les plus élevées sont liées à l'anthropisation du bassin versant (87%), aux pesticides (84%) et aux HAP (75%).

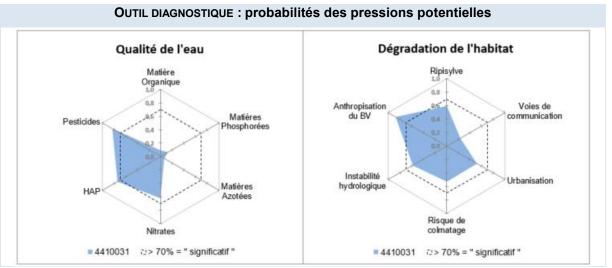


Figure 27 : Outil diagnostique sur le Ruisseau des Barres (04410031)

VI.1.6.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Ruisseau des Barres.

Tableau 14 : Synthèse des résultats physico-chimiques et biologiques sur le Ruisseau des Barres (04410031)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio	logique IBG-DCE	Etat écologique
04410031	Très bon	Bon	Bon	Bon	Bon	Moyen	Bon	Moyen

VI.1.7 Le Sornin à Saint-Maurice-les-Chateauneuf (04015050)

Cette station a été suivie dans le cadre du réseau de l'Agence de l'Eau.

VI.1.7.1 Description de la station

Le Sornin à Saint-Maurice-les-Chateauneuf est situé en partie médiane du bassin versant, en amont de la confluence avec le Mussy. Il s'écoule principalement sur un environnement prairial entouré de quelques parcelles agricoles et les plus grosses villes traversées sont La Clayette et La Chapelle-sous-Dun.

Figure 28 : Localisation du Sornin à Saint-Maurice-les-Chateauneuf (04015050)

VI.1.7.2 Analyse de l'eau

Le tableau ci-dessous présente les données disponibles sur cette station.

Tableau 15 : Classe de qualité des paramètres physico-chimiques analysés sur le Sornin à Saint-Maurice-les-Chateauneuf (04015050)

		·						
			SC	DRNIN à SAINT		S-CHATEAUNE	UF	
					4015050			
		15-févr	12-avr	28-juin	16-août	26-oct	14-nov	20-déc
Arrêté du 27/07/2018								
Température de l'eau	°C	6,6	12,4	17,9	21,0	14,1	8,6	7,7
pH sur le terrain	-	7,9	8,5	7,9	8,1	7,9	7,9	7,8
Oxygénation :								
Oxygène dissous	mg/l O2	12,2	10,8	9,2	8,9	9,9	11,3	11,8
Taux de saturation en oxygène	%	102,4	104,4	99,8	105,0	98,0	99,2	101,6
Demande Biochimique en Oxygène (DBO5)	mg/l O2	1,7	1,5	1,5	1,7	1,0	0,7	1,9
Carbone organique dissous (COD)	mg/l C	2,7	3,3	4,7	6,1	5,8	5,3	0,4
Nutriments :								
Orthophosphates	mg/l PO4	0,07	0,07	0,26	0,32	0,19	0,14	0,13
Phosphore total	mg/l P	0,072	0,046	0,168	0,167	0,084	0,063	0,050
Ammonium	mg/l NH4+	0,02	0,01	0,04	0,02	0,02	0,02	0,03
Nitrites	mg/l NO2-	0,02	0,03	0,08	0,04	0,03	0,03	0,04
Nitrates	mg/l NO3-	8	6	7	5	6	8	11
			,	,	,	,	,	,
SEQ-Eau								
Azote Kjeldahl	mg/l N	0,50	0,50	0,92	0,81	0,55	0,52	0,78
Conductivité brute	μS/cm	168	142	214	237	200	183	159
Matières en suspension totales	mg/l	25	13	38	8	6	5	8
Turbidité	NFU	21,0	9,6	29,9	7,8	7,2	6,0	7,9
SEQ-Eau								
Température de l'air extérieur	°C	9,3	20	24,3	31,5	20,2	11,4	14,7

D'après l'arrêté du 27 juillet 2018, sur l'année 2022, **l'état physico-chimique est bon** sur le Sornin à Saint-Maurice-les-Chateauneuf.

Les paramètres analysés sont tous très bons ou bons. Ce sont principalement les composés phosphorés et le COD qui sont déclassés en bon état.

Selon le SEQ-Eau, seules les MES en juin sont un peu trop élevées et classées en moyenne qualité.

VI.1.7.3 Peuplement de macro-invertébrés

Seuls les résultats biologiques I2M2 sont disponibles sur cette station.

Selon l'Arrêté du 27/07/2018, **l'état biologique est bon** sur le Sornin à Saint-Maurice-les-Chateauneuf, avec un I2M2 de 0,592/1. Les métriques sont toutes satisfaisantes, notamment l'ASPT qui reflète une bonne polluosensibilité du peuplement.

I ₂ M ₂ et état biologique								
I ₂ M ₂	0,592							
Etat biologique (Arrêté du 27/07/18)	Bon							
Nb taxons contributifs	53							
Métriques en EQR								
Indice de Shannon	0,646							
ASPT	0,740							
Polyvoltinisme	0,512							
Ovoviviparité	0,523							
Richesse taxonomique	0.537							

Figure 29 : Résultats biologiques I2M2 sur le Sornin à Saint-Maurice-les-Chateauneuf (04015050)

VI.1.7.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Sornin à Saint-Maurice-les-Chateauneuf.

Tableau 16 : Synthèse des résultats physico-chimiques et biologiques sur le Sornin à Saint-Maurice-les-Chateauneuf (04015050)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio	ologique IBG-DCE	Etat écologique	
04015050	Bon	Bon	Bon	Bon	Bon	Bon	-	Bon	

VI.1.8 Le Mussy à Saint-Maurice-les-Chateauneuf (04410036)

VI.1.8.1 Description de la station

Le Mussy est un affluent rive gauche du Sornin, situé sur la partie intermédiaire du bassin versant. La station est située sur le secteur aval du Mussy, à 1,4 km en amont de la confluence avec le Sornin. Le cours d'eau traverse essentiellement des prairies avec quelques terres agricoles. Le secteur amont est quant à lui plutôt boisé. Sur la station d'étude, le Mussy mesure 3,5 m de large, l'ensoleillement est quasiment nul avec un cordon de ripisylve assez dense. Les faciès d'écoulement sont diversifiés et la mosaïque d'habitats est hétérogène.

Figure 30 : Localisation et prise de vue du Mussy à Saint-Maurice-les-Chateauneuf (04410036)

VI.1.8.2 Analyse de l'eau

Le tableau ci-dessous reprend l'ensemble des paramètres analysés sur cette station.

Tableau 17 : Classe de qualité des paramètres physico-chimiques analysés sur le Mussy à Saint-Maurice-les-Chateauneuf (04410036)

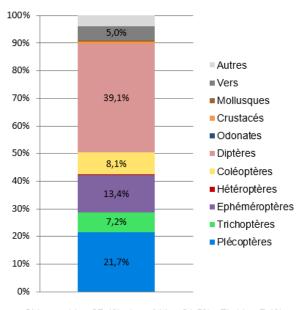
			MUSSY	A SAINT MAUR	ICE LES CHATEA	AUNEUF	
				4410	0036		
		22/02/2022	12/04/2022	29/06/2022	16/08/2022	26/10/2022	20/12/2022
		LSE2202-33491	LSE2204-6558	LSE2206-7611	LSE2208-11796	LSE2210-7266	LSE2212-9561
Arrêté du 27/07/2018							
Température de l'eau	°C	7,7	12,0	16,4	19,9	14,4	8,8
pH sur le terrain	-	7,5	7,6	7,3	7,4	7,5	7,4
Oxygénation :							
Oxygène dissous	mg/l O2	11,6	11,0	8,7	7,7	9,5	11,2
Taux de saturation en oxygène	%	98,9	105,8	92,4	88,5	94,7	98,9
Demande Biochimique en Oxygène (D	E mg/l O2	0,5	0,9	1,3	2,0	0,7	1,0
Carbone organique dissous (COD)	mg/I C	3,1	1,1	5,1	6,4	5,7	3,8
Nutriments :							
Orthophosphates	mg/l PO4	0,05	0,12	0,21	0,13	0,10	0,07
Phosphore total	mg/l P	0,044	0,040	0,122	0,053	0,048	0,038
Ammonium	mg/l NH4+	<0,05	<0,05	0,06	0,08	<0,05	<0,05
Nitrites	mg/l NO2-	0,02	0,02	0,06	0,03	0,02	0,02
Nitrates	mg/l NO3-	10	8	5	5	6	14
SEQ-Eau							
Azote Kjeldahl	mg/l N	<0,5	0,64	<0,5	<0,5	<0,5	<0,5
Conductivité brute	μS/cm	106	109	144	163	149	129
Matières en suspension totales	mg/l	17	20	27	7	5	8
Turbidité	NFU	11,0	6,1	29,0	7,3	5,8	6,6
Autres :							
Température de l'air extérieur	°C	10,1	21	19,4	29,9	21,5	14,3
Débit instantané	m3/s	1,054	0,353	0,078	0,02	0,135	0,427

Selon l'arrêté du 27 juillet 2018, tous les paramètres physico-chimiques sont classés en bon ou très bon état. Le déclassement en bon état est principalement observé pour les composés phosphorés et le COD lors de la période d'étiage et également pour l'oxygénation en août, lorsque le débit est le plus faible.

Ainsi, sur l'année 2022, l'état physico-chimique est bon sur le Mussy à Saint-Maurice-les-Chateauneuf.

Pour les paramètres évalués selon le SEQ-Eau, on observe une faible conductivité lors des deux premières campagnes et un taux de MES un peu élevé en juin (classe moyenne).

VI.1.8.3 Peuplement de macro-invertébrés


Le peuplement macrobenthique du Mussy à Saint-Mauriceles-Chateauneuf est très bien diversifié. Il se compose principalement de diptères Chironomidae (37,4%), organismes ubiquistes et polluorésistants, et de plécoptères Leuctridae (21,5%), individus polluosensibles.

A noter la présence de l'écrevisse invasive *Pacifastacus leniusculus*.

Selon l'Arrêté du 27/07/2018, le très bon état biologique est atteint sur le Mussy à Saint-Maurice-les-Chateauneuf avec un I2M2 de 0,750/1. Toutes les métriques constitutives de l'indice sont bonnes. Elles reflètent une communauté très bien diversifiée mais moyennement équilibrée et la polluosensibilité du peuplement est bonne.

L'équivalent-IBGN est en accord avec l'I2M2 puisque la note de 18/20 permet également de valider le très bon état biologique selon l'Arrêté du 27/07/2015. La variété taxonomique est élevée (classe 12/14) et le GI 7/9 est validé par les Leuctridae. L'indice est robuste puisque les éphéméroptères Leptophlebiidae confirment le GI 7/9.

Figure 31 : Distribution taxonomique du Mussy à Saint-Maurice-les-Chateauneuf (04410036)

Chironomidae 37,4%; Leuctridae 21,5%; Elmidae 7,1%; Hydropsychidae 6,4%; Heptageniidae 6,1%

A souligner la présence de quelques individus du GI 9/9 (Perildae et Perlodidae) mais ils ne peuvent pas être pris en compte dans le calcul de l'indice car leur effectif est inférieur à 3 individus.

INDICES BIOLOGIQUES -	LE MUSSY	ST-MAURICE-LES-CHATEAUNEUF	(04410036)
I₂M₂ et état biologique	9	IBG-DC	E
I_2M_2	0,750	Nombre de taxons :	43
Etat biologique(Arrêté du 27/07/18)	Très bon	Classe de variété (/14) :	12
· , , , , , , , , , , , , , , , , , , ,		Groupe Faunistique Indicateur (/9) :	7
Nb taxons contributifs	57	Taxon Indicateur :	Leuctridae
Métriques en EQR		Equivalent I.B.G.N. / 20 :	18
Indice de Shannon	0,523	•	••
ASPT	0.809	Taille du cours d'eau /HER /EQR	TP3
Polyvoltinisme	0.746	Etat biologique (Arrêté du 27/07/2015)	Très bon
Ovoviviparité	0,828	Robustesse (/20):	18
Richesse taxonomique	0,810	Taxon indicateur robustesse	Leptophlebiio

Figure 32 : Résultats biologiques I2M2 et IBG-DCE sur le Mussy à Saint-Maurice-les-Chateauneuf (04410036)

Ci-dessous, seuls les pesticides apparaissent comme une pression avec une probabilité élevée (74%) selon l'outil diagnostique.

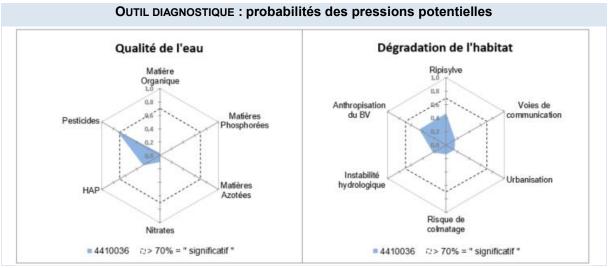


Figure 33 : Outil diagnostique sur le Mussy à Saint-Maurice-les-Chateauneuf (04410036)

VI.1.8.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Mussy à Saint-Maurice-les-Chateauneuf.

Tableau 18 : Synthèse des résultats physico-chimiques et biologiques sur le Mussy à Saint-Maurice-les-Chateauneuf (04410036)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio 12M2	logique IBG-DCE	Etat écologique
04410036	Très bon	Très bon	Bon	Bon	Bon	Très bon	Très bon	Bon

VI.1.9 Le Botoret à Tancon (04410033)

VI.1.9.1 Description de la station

Le Botoret est un affluent rive gauche du Sornin, situé sur la partie médiane du bassin versant. La station est localisée en amont de la confluence avec l'Aron, sur la commune de Tancon. Le cours d'eau est essentiellement bordé de prairies et traverses quelques secteurs urbanisés, notamment la ville de Chauffailles.

Sur la station d'étude, le Botoret mesure 3,5 m de large, l'ensoleillement est faible avec un cordon de ripisylve assez dense. Les écoulements sont variés avec des alternances de radiers et de plats lentiques/courants où la granulométrie grossière domine (40%). Sept autres substrats sont présents, offrant une hétérogénéité de zones de refuges et de nourriture pour la macrofaune benthique.

Figure 34: Localisation et prise de vue du Botoret à Tancon (04410033)

VI.1.9.2 Analyse de l'eau

Le tableau ci-dessous reprend l'ensemble des paramètres analysés sur cette station.

Tableau 19 : Classe de qualité des paramètres physico-chimiques analysés sur le Botoret à Tancon (04410033)

				BOTORET	A TANCON		
				4410	0033		
		22/02/2022	12/04/2022	29/06/2022	17/08/2022	27/10/2022	21/12/2022
		LSE2202-33490	LSE2204-6557	LSE2206-7610	LSE2208-11795	LSE2210-7265	LSE2212-9560
Arrêté du 27/07/2018							
Température de l'eau	°C	7,2	9,5	16,5	17,6	13,0	8,9
pH sur le terrain	-	7,6	8,0	7,4	7,2	7,6	7,4
Oxygénation :							
Oxygène dissous	mg/I O2	11,8	11,8	9,1	7,3	9,9	11,2
Taux de saturation en oxygène	%	92,2	107,5	95,7	80,0	96,4	99,3
Demande Biochimique en Oxygène (DE mg/l O2	0,6	1,6	1,2	1,6	0,8	2,7
Carbone organique dissous (COD)	mg/I C	3,1	3,3	4,4	6,1	5,1	4,4
Nutriments :							
Orthophosphates	mg/I PO4	0,08	0,11	0,47	0,28	0,42	0,24
Phosphore total	mg/l P	0,063	0,060	0,196	0,125	0,147	0,144
Ammonium	mg/l NH4+	<0,05	<0,05	<0,05	0,05	<0,05	0,23
Nitrites	mg/l NO2-	0,03	0,04	0,09	0,05	0,02	0,13
Nitrates	mg/l NO3-	10	8	6	5	5	12
SEQ-Eau							
Azote Kjeldahl	mg/l N	0,70	<0,5	0,66	0,55	<0,5	0,66
Conductivité brute	μS/cm	121	137	182	218	211	167
Matières en suspension totales	mg/l	16	8	17	<2,0	4	30
Turbidité	NFU	11,0	3,4	14,0	2,5	5,2	25,0
Autres :							
Température de l'air extérieur	°C	10,1	14	20,6	19,4	14,6	11,1
Débit instantané	m3/s	1,234	0,962	0,144	0,008	0,102	0,58

Page **44** sur **89**

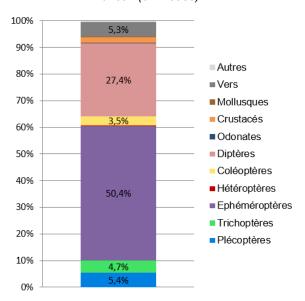
Selon l'arrêté du 27 juillet 2018, **l'état physico-chimique est bon** sur le Botoret à Tancon (04410033). Tous les paramètres sont en très bon ou bon état.

Pour toute les campagnes, on observe un déclassement en bon état pour les composés phosphorés. De plus, en décembre, les composés azotés passent également d'une très bonne qualité à une bonne qualité.

On constate également une légère baisse de l'oxygénation lors de la campagne d'août.

Pour les paramètres évalués selon le SEQ-Eau, une augmentation de la concentration en MES est observée en décembre (classe moyenne).

VI.1.9.3 Peuplement de macro-invertébrés


Le peuplement macrobenthique du Mussy à Saint-Mauriceles-Chateauneuf est principalement dominé par deux taxons. Les Ephemerellidae constituent 30,2% des effectifs. Ce sont des larves rampantes au régime alimentaire de type broyeur/brouteur, qui se nourrissent principalement de végétaux. Puis viennent les diptères Chironomidae qui constituent 24,5% du peuplement. Ces organismes ubiquistes sont polluorésistants.

A noter la présence de l'écrevisse invasive *Pacifastacus leniusculus*.

Selon l'Arrêté du 27/07/2018, **l'état biologique est bon sur le Botoret à Tancon** avec un I2M2 de 0,578/1. Les métriques les plus faibles indiquent un peuplement moyennement diversifié et équilibré.

L'équivalent-IBGN est en accord avec l'I2M2 puisque la note de 15/20 traduit également un bon état biologique selon l'Arrêté du 27/07/2015. La variété taxonomique est correcte (classe 9/14) et le GI 7/9 est validé par les Leuctridae et les Leptophlebiidae.

Figure 35 : Distribution taxonomique du Botoret à Tancon (04410033)

Ephemerellidae 30,2%; Chironomidae 24,5%; Baetidae 11,3%; Heptageniidae 8,2%; Leuctridae 5,3%

A noter la présence d'un individu très polluosensible du GI 9/9, le plécoptère Chloroperlidae.

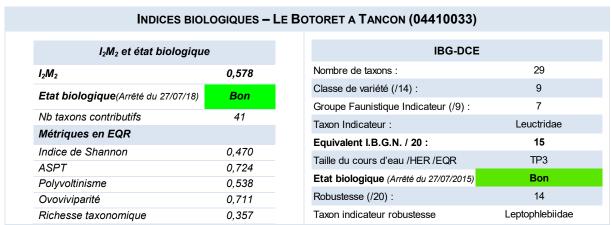


Figure 36 : Résultats biologiques I2M2 et IBG-DCE sur le Botoret à Tancon (04410033)

Selon le modèle statistique de l'outil diagnostique, les pesticides et l'anthropisation du bassin versant sont des pressions probables (p=87% et 69%).

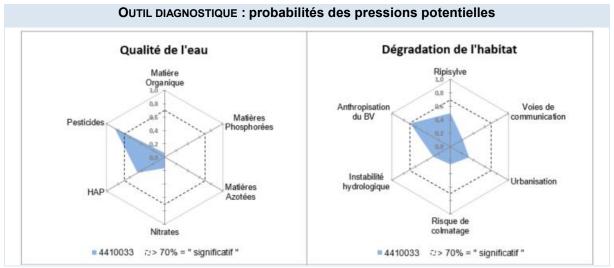


Figure 37 : Outil diagnostique sur le Botoret à Tancon (04410033)

VI.1.9.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Botoret à Tancon (04410033).

Tableau 20 : Synthèse des résultats physico-chimiques et biologiques sur le Botoret à Tancon (04410033)

	code	Température	рН	Oxygénation	Nutriments	Etat physico-		logique	Etat
	station	·	·	, •		chimique	12M2	IBG-DCE	écologique
(04410033	Très bon	Très bon	Bon	Bon	Bon	Bon	Bon	Bon

VI.1.10 L'Aron à Coublanc (04410029)

VI.1.10.1 <u>Description de la station</u>

L'Aron est un affluent rive gauche du Botoret, lui-même affluent rive gauche du Sornin. Ce cours d'eau traverse principalement des prairies et certaines zones urbaines (Belmont-de-Loire, Cadollon, Saint-Igny-de-Roche). Quelques boisements et terres agricoles sont environnants.

Sur la station d'étude, l'Aron mesure 3,2 m de large, l'ensoleillement est moyen avec une ripisylve en rideau plus ou moins clairsemée. Les vitesses de courant sont variées, les pierres dominent 72% du biotope. Sept autres substrats viennent diversifier les potentialités d'accueil de la macrofaune benthique.

Figure 38 : Localisation et prise de vue de l'Aron à Coublanc (04410029)

VI.1.10.2 Analyse de l'eau

Le tableau ci-dessous reprend l'ensemble des paramètres analysés sur cette station.

Tableau 21 : Classe de qualité des paramètres physico-chimiques analysés sur l'Aron à Coublanc (04410029)

				ARON A C	OUBLANC		
				4410	0029		
		22/02/2022	12/04/2022	29/06/2022	17/08/2022	27/10/2022	21/12/2022
		LSE2202-33488	LSE2204-6555	LSE2206-7608	LSE2208-11793	LSE2210-7263	LSE2212-9558
Arrêté du 27/07/2018							
Température de l'eau	°C	7,6	10,4	16,9	17,8	12,8	7,7
pH sur le terrain	-	7,7	7,7	7,2	7,2	7,4	7,2
Oxygénation :							
Oxygène dissous	mg/I O2	11,8	11,2	8,5	7,7	9,4	11,3
Taux de saturation en oxygène	%	100,3	104,1	91,2	83,9	90,9	96,6
Demande Biochimique en Oxygène (I	DE mg/l O2	0,9	1,9	1,4	2,1	0,8	1,3
Carbone organique dissous (COD)	mg/I C	3,1	4,0	6,1	<0,2	6,6	4,4
Nutriments :							
Orthophosphates	mg/l PO4	0,11	0,09	0,31	0,59	0,41	0,03
Phosphore total	mg/l P	0,055	0,069	0,158	0,252	0,153	0,034
Ammonium	mg/l NH4+	0,05	0,05	0,08	0,10	0,07	0,19
Nitrites	mg/l NO2-	0,05	0,04	0,07	0,09	0,06	0,07
Nitrates	mg/l NO3-	10	8	6	10	5	14
SEQ-Eau							
Azote Kjeldahl	mg/l N	<0,5	<0,5	0,75	0,88	0,57	0,71
Conductivité brute	μS/cm	115	127	141	221	175	158
Matières en suspension totales	mg/l	7	10	22	5	4	8
Turbidité	NFU	4,3	5,4	15,0	4,8	3,4	7,6
Autres :							
Température de l'air extérieur	°C	10,9	15	21	20,1	18	13,8
Débit instantané	m3/s	0,562	0,18	0,146	0,018	0,045	0,009

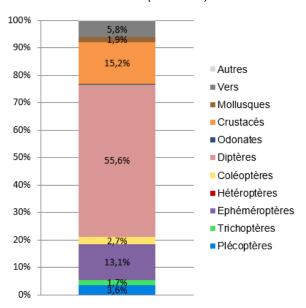
Selon l'arrêté du 27 juillet 2018, sur l'année 2022, **l'état physico-chimique de l'Aron à Coublanc est moyen** en raison d'un déclassement des orthophosphates et du phosphore total en classe de qualité moyenne en août, lorsque le débit est le plus faible.

Lors des autres campagnes, les composés phosphorés sont souvent en bon état.

L'oxygénation de l'eau est bonne à très bonne et la température et le pH sont toujours en très bon état.

Pour les paramètres évalués selon le SEQ-Eau, on observe une faible minéralisation de l'eau en février (conductivité en classe moyenne).

VI.1.10.3 Peuplement de macro-invertébrés


Le peuplement macrobenthique de l'Aron à Coublanc est dominé par les diptères Chironomidae qui occupent 52,5% des effectifs. Communément appelés « vers de vase », ces organismes polluorésistants peuvent aussi bien vivre dans les eaux de bonne qualité que proliférer dans les milieux pollués. A noter la présence de l'écrevisse invasive *Pacifastacus leniusculus*.

Selon l'Arrêté du 27/07/2018, **l'état biologique est bon sur l'Aron à Coublanc** avec un I2M2 de 0,583/1. Toutes les métriques sont bonnes, excepté l'indice de Shannon qui reflète le déséquilibre du peuplement.

L'équivalent-IBGN traduit également un bon état biologique selon l'Arrêté du 27/07/2015 avec une note de 16/20. La variété taxonomique est satisfaisante (classe 10/14) et le GI 7/9 est validé par les Leuctridae, les Goeridae et les Leptophlebiidae.

A noter la présence d'un individu très polluosensible du GI 9/9, le plécoptère Chloroperlidae.

Figure 39 : Distribution taxonomique de l'Aron à Coublanc (04410029)

Chironomidae 52,5%; Gammaridae 14,9%; Baetidae 8,8%; OLIGOCHETES 5,4%; Leuctridae 3,6%

INDICES BIOLOGIQUES – L'ARON A COUBLANC (04410029)							
I₂M₂ et état biologique		IBG-DCE					
l ₂ M ₂	0,583	Nombre de taxons :	36				
Etat biologique(Arrêté du 27/07/18)	Bon	Classe de variété (/14) :	10				
3 , \		Groupe Faunistique Indicateur (/9) :	7				
Nb taxons contributifs	53	Taxon Indicateur :	Leuctridae				
Métriques en EQR		Equivalent I.B.G.N. / 20 :	16				
Indice de Shannon	0,169	•					
ASPT	0,811	Taille du cours d'eau /HER /EQR	TP3				
Polyvoltinisme	0.582	Etat biologique (Arrêté du 27/07/2015)	Bon				
Ovoviviparité	0,618	Robustesse (/20):	16				
Richesse taxonomique	0,667	Taxon indicateur robustesse	Goeridae				

Figure 40 : Résultats biologiques I2M2 et IBG-DCE sur l'Aron à Coublanc (04410029)

Selon le modèle statistique de l'outil diagnostique, les probabilités de pressions les plus élevées sont liées aux pesticides (p=85%) et à l'anthropisation du bassin versant (p=68%).

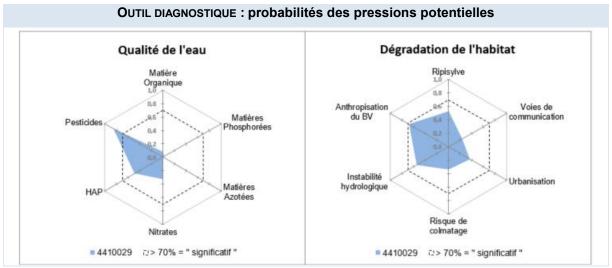


Figure 41: Outil diagnostique sur l'Aron à Coublanc (04410029)

VI.1.10.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur l'Aron à Coublanc.

Tableau 22 : Synthèse des résultats physico-chimiques et biologiques sur l'Aron à Coublanc (04410029)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio	ologique IBG-DCE	Etat écologique
04410029	Très bon	Très bon	Bon	Moyen	Moyen	Bon	Bon	Moyen

VI.1.11 <u>Le Pontbrenon à Coublanc (04410038)</u>

VI.1.11.1 <u>Description de la station</u>

Le Pontbrenon est un affluent rive gauche de l'Aron, lui-même sous affluent rive gauche du Sornin. Il traverse principalement des prairies et quelques zones d'habitations et des petits secteurs boisés.

Sur la station d'étude, le Pontbrenon mesure 2,4 m de large, la ripisylve offre un ombrage important. Le faciès d'écoulement est majoritairement lentique avec quelques radiers et plats courants. Les pierres dominent 76% de la station et on retrouve du sable (15%) dans les zones plus calmes. Les supports marginaux sont variés, apportant une diversité de niches écologiques pour les invertébrés benthiques.

Figure 42 : Localisation et prise de vue du Pontbrenon à Coublanc (04410038)

VI.1.11.2 <u>Analyse de l'eau</u>

Le tableau ci-dessous reprend l'ensemble des paramètres analysés sur cette station.

Tableau 23 : Classe de qualité des paramètres physico-chimiques analysés sur le Pontbrenon à Coublanc (04410038)

		PONTBRENON A COUBLANC						
		4410038						
		22/02/2022	12/04/2022	29/06/2022	16/08/2022	27/10/2022	21/12/2022	
		LSE2202-33492	LSE2204-6559	LSE2206-7612		LSE2210-7267	LSE2212-9562	
Arrêté du 27/07/2018								
Température de l'eau	°C	7,7	10,5	16,1		12,5	8,7	
pH sur le terrain	-	7,5	7,5	7,1		7,3	6,9	
Oxygénation :								
Oxygène dissous	mg/l O2	11,5	11,1	8,6		9,2	11,0	
Taux de saturation en oxygène	%	98,1	103,5	90,8		88,5	97,3	
Demande Biochimique en Oxygène	(DE mg/l O2	1,4	0,6	1,0		1,2	2,1	
Carbone organique dissous (COD)	mg/I C	3,2	3,3	4,6		5,4	5,4	
Nutriments :								
Orthophosphates	mg/l PO4	0,08	0,07	0,27		0,21	0,24	
Phosphore total	mg/l P	0,058	0,052	0,108		0,065	0,066	
Ammonium	mg/l NH4+	<0,05	<0,05	0,07	Assec	<0,05	0,09	
Nitrites	mg/l NO2-	0,02	0,02	0,04	ASSEC	0,02	0,02	
Nitrates	mg/l NO3-	10	7	5		3	13	
SEQ-Eau								
Azote Kjeldahl	mg/l N	<0,5	<0,5	<0,5		0,51	0,56	
Conductivité brute	μS/cm	110	110	143		178	146	
Matières en suspension totales	mg/l	30	19	9		<2,0	21	
Turbidité	NFU	18,0	7,0	7,1		1,8	14,0	
Autres :								
Température de l'air extérieur	°C	10,4	16	23,1		15,1	12,1	
Débit instantané	m3/s	0,246	0,09	0,025		0,012	0,119	

Page **50** sur **89**

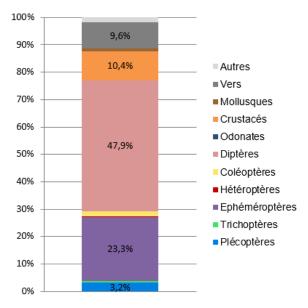
Le ruisseau était en assec lors de la campagne d'août.

D'après l'arrêté du 27 juillet 2018, **l'état physico-chimique est bon** sur le Pontbrenon à Coublanc. Les paramètres sont tous en très bon ou bon état, ce dernier étant souvent constaté pour les composés phosphorés.

Selon le SEQ-Eau, on observe une faible conductivité de l'eau en février et en avril. Le taux de MES est un peu élevé lors de la première campagne (qualité moyenne).

VI.1.11.3 Peuplement de macro-invertébrés

Le peuplement macrobenthique du Pontbrenon à Coublanc est essentiellement dominé par les diptères Chironomidae (41,5%). Ces organismes polluorésistants peuvent occuper tous types de milieux. Ils sont accompagnés par les éphéméroptères Baetidae (15,1%), les crustacés Gammaridae (10%) et les vers Oligochètes (9,4%).


A noter la présence de l'écrevisse invasive *Pacifastacus leniusculus*.

Selon l'Arrêté du 27/07/2018, **l'état biologique est bon sur le Pontbrenon à Coublanc** avec un I2M2 de 0,538/1. La métrique la plus élevée est l'ASPT, reflétant une bonne polluosensibilité du peuplement.

L'équivalent-IBGN est en accord avec l'I2M2 puisqu'il traduit également un bon état biologique selon l'Arrêté du 27/07/2015 avec une note de 17/20. La variété taxonomique est correcte (classe 9/14) et le GI 9/9, le plus polluosensible est validé par les plécoptères Perlodidae.

L'indice perd 2 points lors du calcul de la robustesse car c'est le GI 7 qui est obtenu secondairement par les Leuctridae.

Figure 43 : Distribution taxonomique du Pontbrenon à Coublanc (04410038)

Chironomidae 41,5%; Baetidae 15,1%; Gammaridae 10%; OLIGOCHETES 9,4%; Leptophlebildae 3,2%

Toutefois, un deuxième taxon du GI 9 est présent (Chloroperlidae), mais pas suffisamment abondant pour valider le GI.

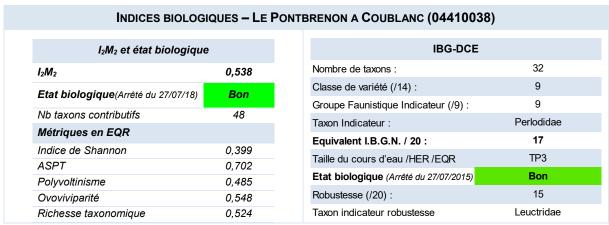


Figure 44 : Résultats biologiques I2M2 et IBG-DCE sur le Pontbrenon à Coublanc (04410038)

Ci-dessous, toutes les probabilités de pressions issues de l'outil diagnostique sont inférieures à 70%. Les pesticides ont une probabilité de 64%.

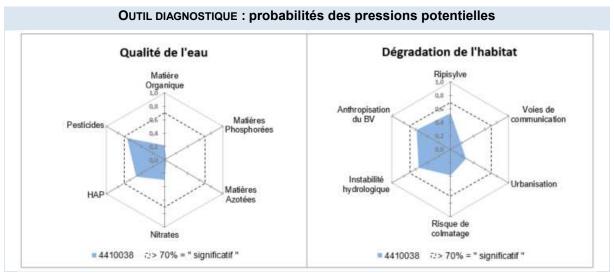


Figure 45 : Outil diagnostique sur le Pontbrenon à Coublanc (04410038)

VI.1.11.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Pontbrenon à Coublanc.

Tableau 24 : Synthèse des résultats physico-chimiques et biologiques sur le Pontbrenon à Coublanc (04410038)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio 12M2	ologique IBG-DCE	Etat écologique
04410038	Très bon	Très bon	Bon	Bon	Bon	Bon	Bon	Bon

VI.1.12 <u>Le Botoret à Tancon (04410026)</u>

Cette station a été suivie dans le cadre du réseau de l'Agence de l'Eau.

VI.1.12.1 <u>Description de la station</u>

Le Botoret est un affluent rive gauche du Sornin, situé sur la partie médiane du bassin versant. Cette station est localisée en aval de la confluence avec l'Aron, sur la commune de Tancon. Le cours d'eau est essentiellement bordé de prairies et traverses quelques secteurs urbanisés, notamment la ville de Chauffailles.

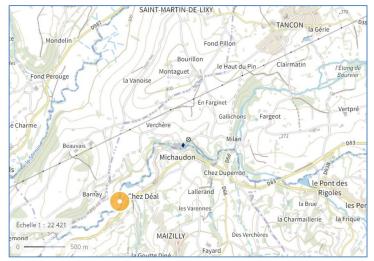


Figure 46 : Localisation et prise de vue du Botoret à Tancon (04410026)

VI.1.12.2 <u>Analyse de l'eau</u>

Le tableau ci-dessous présente les données disponibles sur cette station.

Tableau 25 : Classe de qualité des paramètres physico-chimiques analysés sur le Botoret à Tancon (04410026)

					À TANCON 0026		
		15-févr	12-avr	28-juin	16-août	27-oct	21-déc
Arrêté du 27/07/2018							
Température de l'eau	°C	6,9	11,5	18,0	23,0	13,3	8,7
pH sur le terrain	-	7,8	8,5	7,7	7,8	7,7	7,4
Oxygénation :							
Oxygène dissous	mg/I O2	12,0	11,7	9,1	8,5	9,8	11,4
Taux de saturation en oxygène	%	101,6	110,7	98,3	103,0	95,8	100,4
Demande Biochimique en Oxygène (DBO5)	mg/l O2	1,4	1,0	1,2	2,0	0,7	1,8
Carbone organique dissous (COD)	mg/I C	2,8	3,3	5,9	6,8	5,6	4,9
Nutriments :			,			•	
Orthophosphates	mg/I PO4	0,11	0,12	0,43	0,36	0,37	0,20
Phosphore total	mg/l P	0,064	0,059	0,209	0,191	0,137	0,109
Ammonium	mg/l NH4+	0,09	0,01	0,13	0,09	0,05	0,10
Nitrites	mg/l NO2-	0,05	0,03	0,14	0,08	0,03	0,09
Nitrates	mg/l NO3-	9	7	6	7	4	14
					,	,	
SEQ-Eau							
Azote Kjeldahl	mg/l N	0,55	0,87	1,20	1,20	0,51	0,61
Conductivité brute	μS/cm	142	133	164	233	205	167
Matières en suspension totales	mg/l	16	4	29	6	2	20
Turbidité	NFU	8,6	4,2	21,2	6,3	3,4	20,4
SEQ-Eau						•	
Température de l'air extérieur	°C	7,8	21	23,5	31,5	16,2	12,2

Selon l'arrêté du 27 juillet 2018, en 2022, **l'état physico-chimique est moyen** sur le Botoret à Tancon (04410026), en raison d'un déclassement du phosphore total en juin et de la température de l'eau en août. Les composés phosphorés n'atteignent jamais le très bon état.

Selon le SEQ-Eau, on note un taux de MES un peu trop élevé en juin (classe moyenne).

VI.1.12.3 Peuplement de macro-invertébrés

Seuls les résultats biologiques I2M2 sont disponibles sur cette station.

Selon l'Arrêté du 27/07/2018, **l'état biologique est très bon** sur le Botoret à Tancon (04410026), avec un I2M2 de 0,670/1. Toutes les métriques sont satisfaisantes. L'ASPT indique une bonne polluosensibilité du peuplement (0,740/1).

I₂M ₂ et état biologique							
I ₂ M ₂	0,670						
Etat biologique (Arrêté du 27/07/18)	Très bon						
Nb taxons contributifs	50						
Métriques en EQR							
Indice de Shannon	0,654						
ASPT	0,740						
Polyvoltinisme	0,604						
Ovoviviparité	0,819						
Richesse taxonomique	0,469						

Figure 47 : Résultats biologiques I2M2 sur le Botoret à Tancon (04410026)

VI.1.12.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Botoret à Tancon (04410026).

Tableau 26 : Synthèse des résultats physico-chimiques et biologiques sur le Botoret à Tancon (04410026)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio	ologique IBG-DCE	Etat écologique
04410026	Moyen	Bon	Bon	Moyen	Moyen	Très bon	-	Moyen

VI.1.13 <u>Le ruisseau des Equetteries à Charlieu (04015160)</u>

VI.1.13.1 <u>Description de la station</u>

Le ruisseau des Equetteries est un affluent rive droite du Sornin, situé en aval du bassin versant. Il traverse principalement des prairies. La station est située juste en amont de la confluence avec le Sornin.

La largeur moyenne du ruisseau est de 2,9 m sur cette station. La ripisylve est bien présente et permet un faible ensoleillement. Le plat lentique domine 90% de la station et quelques radiers sont présents. La granulométrie grossière recouvre 77% du lit mineur. Plusieurs substrats minoritaires offrent une mosaïque d'habitats variés pour la macrofaune.

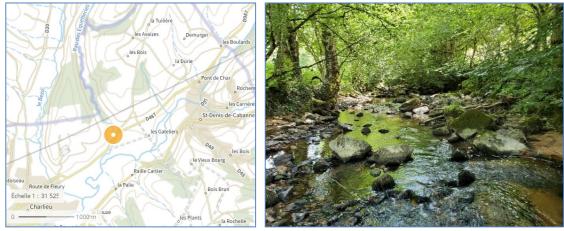


Figure 48 : Localisation et prise de vue du ruisseau des Equetteries à Charlieu (04015160)

VI.1.13.2 <u>Analyse de l'eau</u>

Le tableau ci-dessous reprend l'ensemble des paramètres analysés sur cette station.

Tableau 27 : Classe de qualité des paramètres physico-chimiques analysés sur le Rau des Equetteries à Charlieu (04015160)

			RA	U DES EQUETTI		EU			
		1	4015160						
		22/02/2022	12/04/2022	29/06/2022	17/08/2022	27/10/2022	21/12/2022		
A \$4.5 dec 07/07/0040		LSE2202-33482	LSE2204-6549	LSE2206-7602		LSE2210-7257	LSE2212-9552		
Arrêté du 27/07/2018	la a								
Température de l'eau	°C	6,8	12,1	17,3		13,6	7,9		
pH sur le terrain	-	7,8	7,7	7,1		7,2	7,2		
<u>Oxygénation :</u>									
Oxygène dissous	mg/I O2	11,7	10,9	7,4		6,0	10,3		
Taux de saturation en oxygène	%	97,0	104,2	79,4		58,3	89,0		
Demande Biochimique en Oxygène (D	E mg/l O2	0,7	0,9	2,1		1,0	0,8		
Carbone organique dissous (COD)	mg/I C	5,9	6,1	9,4		9,2	5,8		
Nutriments :									
Orthophosphates	mg/l PO4	0,05	0,07	0,18		0,13	0,04		
Phosphore total	mg/l P	0,044	0,048	0,107		0,062	0,029		
Ammonium	mg/l NH4+	<0,05	<0,05	<0,05	Assec	0,13	<0,05		
Nitrites	mg/l NO2-	0,03	0,02	0,08	ASSEC	0,06	0,03		
Nitrates	mg/I NO3-	5	3	4		1	8		
SEQ-Eau									
Azote Kjeldahl	mg/l N	<0,5	0,57	0,78		0,84	<0,5		
Conductivité brute	μS/cm	140	155	192		221	177		
Matières en suspension totales	mg/l	9	10	9		3	4		
Turbidité	NFU	14,0	10,0	13,0		4,8	5,8		
Autres :									
Température de l'air extérieur	°C	9,6	20	24,1		19,7	14,4		
Débit instantané	m3/s	0,168	0,04	0,018		0,011	0,072		

Le ruisseau était en assec lors de la campagne d'août.

D'après l'arrêté du 27 juillet 2018, sur l'année 2022, **l'état physico-chimique du ruisseau des Equetteries à Charlieu est moyen** en raison d'un **déclassement du paramètre COD** en juin et en octobre et d'un **déclassement du taux de saturation en oxygène** en octobre.

Ces altérations de la qualité de l'eau sont vraisemblablement liées à l'étiage sévère sur ce ruisseau.

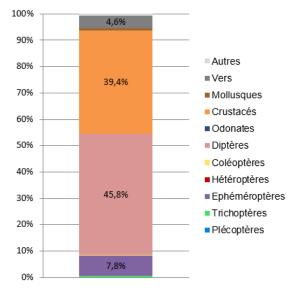
Tous les autres paramètres sont classés en bonne ou très bonne qualité, idem pour ceux évalués selon le SEQ-Eau.

VI.1.13.3 <u>Peuplement de macro-invertébrés</u>

INDICES BIOLOGIQUE	S – LE RAU	ES EQUETTERIES A CHARLIEU (040	15160)
l₂M₂ et état biologique		IBG-DCE	
I_2M_2	0,316	Nombre de taxons :	26
Etat biologique(Arrêté du 27/07/18)	Moyen	Classe de variété (/14) :	8
~ , , , , , , , , , , , , , , , , , , ,	•	Groupe Faunistique Indicateur (/9) :	7
Nb taxons contributifs	38	Taxon Indicateur :	Leptophlebii
Métriques en EQR		Equivalent I.B.G.N. / 20 :	14
Indice de Shannon	0,064	•	
ASPT	0.694	Taille du cours d'eau /HER /EQR	TP21
Polyvoltinisme	0.118	Etat biologique (Arrêté du 27/07/2015)	Moyen
Ovoviviparité	0,343	Robustesse (/20):	12
Richesse taxonomique	0.306	Taxon indicateur robustesse	Heptageniid

Figure 49 : Résultats biologiques I2M2 et IBG-DCE sur le Rau des Equetteries à Charlieu (04015160)

Deux taxons dominent le peuplement macrobenthique du ruisseau des Equetteries à Charlieu. Il s'agit des diptères Chironomidae (45,6%) et des crustacés Gammaridae (39,1%), organismes polluorésistants.


A noter la présence de l'écrevisse invasive *Pacifastacus leniusculus*.

Selon l'Arrêté du 27/07/2018, **l'état biologique est moyen sur le ruisseau des Equetteries** avec un I2M2 de 0,316/1. La métrique la plus faible est l'indice de Shannon (0,064/1), reflétant le déséquilibre du peuplement. On note cependant que l'ASPT, reflétant la polluosensibilité des taxons, est la métrique la plus élevée (0,694/1).

L'équivalent-IBGN traduit également un état biologique moyen selon l'Arrêté du 27/07/2015 avec une note de 14/20. La variété taxonomique est moyenne (classe 8/14) et le GI 7/9 est validé par les plécoptères Leuctridae.

La robustesse perd 2 points car c'est le GI 5 qui est validé secondairement par les éphéméroptères Heptageniidae.

Figure 50 : Distribution taxonomique du Rau des Equetteries à Charlieu (04015160)

Chironomidae 45,6%; Gammaridae 39,1%; OLIGOCHETES 4,5% Heptageniidae 2,6%; Ephemerellidae 2,6%

Deux autres taxons du GI 7 sont présents (Goeridae et Glossosomatidae) mais ils ne sont pas suffisamment abondants pour valider le GI correspondant.

Les probabilités de pressions les plus élevées, qui ressortent de l'outil diagnostique, sont l'anthropisation du bassin versant (75%) et les pesticides (65%).

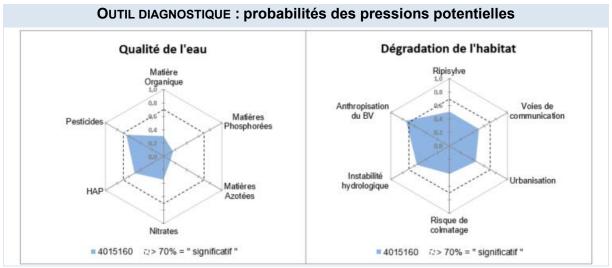


Figure 51 : Outil diagnostique sur le Rau des Equetteries à Charlieu (04015160)

VI.1.13.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Rau des Equetteries à Charlieu.

Tableau 28 : Synthèse des résultats physico-chimiques et biologiques sur le Rau des Equetteries à Charlieu (04015160)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio	ologique IBG-DCE	Etat écologique
04015160	Très bon	Très bon	Moyen	Bon	Moyen	Moyen	Moyen	Moyen

VI.1.14 Le Bezo à Charlieu (04015190)

VI.1.14.1 <u>Description de la station</u>

Le Bezo est un affluent rive droite du Sornin, situé en aval du bassin versant. Il traverse principalement des prairies et une petite zone urbanisée en arrivant à Charlieu. La station est située juste en amont de la confluence avec le Sornin

Sur le site d'étude, le Bezo mesure 6,1 m de large. L'ensoleillement est fort, les rives sont herbacées, ce qui favorise le développement algal qui occupe 20% de recouvrement. On retrouve les pierres (70%) qui dominent principalement sur du plat lentique avec quelques radiers.



Figure 52 : Localisation et prise de vue du Bezo à Charlieu (04015190)

VI.1.14.2 <u>Analyse de l'eau</u>

Le tableau ci-dessous reprend l'ensemble des paramètres analysés sur cette station.

Tableau 29 : Classe de qualité des paramètres physico-chimiques analysés sur le Bezo à Charlieu (04015190)

•					•	,	
	BEZO à CHARLIEU						
	22/02/2022	12/04/2022	29/06/2022	17/08/2022	27/10/2022	21/12/2022	
	LSE2202-33483	LSE2204-6550	LSE2206-7603	LSE2208-11788	LSE2210-7258	LSE2212-9553	
°C	7,1	12,7	18,9	19,3	14,1	9,1	
-	8,2	8,3	7,5	6,9	7,3	7,8	
		-					
mg/I O2	12,5	12,1	8,4	4,8	7,8	11,8	
%	103,9	117,3	93,3	53,7	77,3	103,3	
E mg/l O2	0,8	1,0	1,5	4,0	0,6	1,8	
mg/I C	3,3	3,0	5,0	<0,2	4,7	3,6	
				,			
mg/I PO4	0,04	0,09	0,14	0,12	0,11	0,04	
mg/I P	0,036	0,035	0,098	0,068	0,048	0,010	
mg/l NH4+	<0,05	<0,05	<0,05	0,13	<0,05	<0,05	
mg/I NO2-	0,02	0,03	0,05	0,09	0,02	0,03	
mg/I NO3-	6	5	5	3	2	9	
mg/l N	<0,5	<0,5	0,69	0,56	<0,5	<0,5	
μS/cm	221	252	260	267	266	237	
mg/l	9	17	24	4	4	6	
NFU	12,0	18,0	34,0	1,7	3,2	8,7	
°C	9	20	24,1	20,5	19,5	14,3	
m3/s	0,441	0,329	0,152	0,02	0,036	0,231	
	mg/I O2 % E mg/I O2 mg/I C mg/I PO4 mg/I P mg/I NH4+ mg/I NO2- mg/I NO3- mg/I N µS/cm mg/I NFU	C 7,1 - 8,2 mg/I O2 12,5 % 103,9 mg/I C 3,3 mg/I P 0,036 mg/I NH4+ <0,05 mg/I NO2- mg/I NO2- mg/I NO3- 6 mg/I NFU 12,0 °C 9	CSE2202-33483 LSE2204-6550 °C 7,1 12,7 - 8,2 8,3 mg/I O2 12,5 12,1 % 103,9 117,3 Emg/I O2 0,8 1,0 mg/I C 3,3 3,0 mg/I P 0,036 0,035 mg/I NH4+ <0,05 <0,05 mg/I NO2- 0,02 0,03 mg/I NO3- 6 5 mg/I N <0,5 <0,5 μS/cm 221 252 mg/I NFU 12,0 18,0 °C 9 20	A01:	A015190	4015190 22/02/2022 12/04/2022 29/06/2022 17/08/2022 27/10/2022 LSE2202-33483 LSE2204-6550 LSE2206-7603 LSE2208-11788 LSE2210-7258 °C 7,1 12,7 18,9 19,3 14,1 - 8,2 8,3 7,5 6,9 7,3 mg/I O2 12,5 12,1 8,4 4,8 7,8 % 103,9 117,3 93,3 53,7 77,3 mg/I C 3,3 3,0 5,0 <0,2 4,7 mg/I PO4 0,04 0,09 0,14 0,12 0,11 mg/I P 0,036 0,035 0,098 0,068 0,048 mg/I NH4+ <0,05 <0,05 <0,05 0,13 <0,05 mg/I NO2- 0,02 0,03 0,05 0,09 0,02 mg/I NO3- 6 5 5 3 2 mg/I NO3- 6 5 5 3 2 °C 9 20 24,1 20,5 19,5	

Page **58** sur **89**

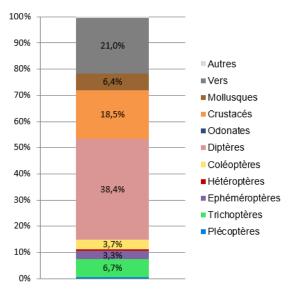
D'après l'arrêté du 27 juillet 2018, sur l'année 2022, **l'état physico-chimique du Bezo à Charlieu est bon** malgré un état moyen pour l'oxygène dissous et le taux de saturation en oxygène lors de la campagne d'août (cf. paragraphe V.4, condition du § 2.2 de l'annexe 2 de l'Arrêté du 27/07/2018).

En période d'étiage, lors des campagnes de juin, août et octobre, on observe aussi une augmentation des concentrations en composés phosphorés et de l'ammonium en août (passage du très bon état au bon état).

Les paramètres évalués selon le SEQ-Eau, sont tous en classe de qualité satisfaisante.

VI.1.14.3 <u>Peuplement de macro-invertébrés</u>

Les organismes polluorésistants dominent le peuplement macrobenthique du Bezo à Charlieu. Les diptères Chironomidae constituent 38,2% des effectifs et ils sont accompagnés par les vers Oligochètes (20%) et les crustacés Gammaridae (18,2%).


Selon l'Arrêté du 27/07/2018, le bon état biologique est atteint sur le Bezo à Charlieu avec un I2M2 de 0,464/1. La richesse taxonomique est très bonne (0,750/1), les autres métriques sont faibles à moyennes.

L'équivalent-IBGN traduit quant à lui un très bon état biologique selon l'Arrêté du 27/07/2015 avec une note de 18/20. La variété taxonomique est très bonne (classe 12/14) et le GI 7/9 est validé par les plécoptères Leuctridae.

Secondairement, c'est le GI 5 qui est obtenu avec les Hydroptilidae. L'indice perd ainsi 3 points lors du calcul de la robustesse.

Quelques individus Goeridae (GI 7) sont toutefois présents.

Figure 53 : Distribution taxonomique du Bezo à Charlieu (04015190)

Chironomidae 38,2% ; OLIGOCHETES 20% ; Gammaridae 18,2% Hydropsychidae 4,1% ; Ancylus 3,4%

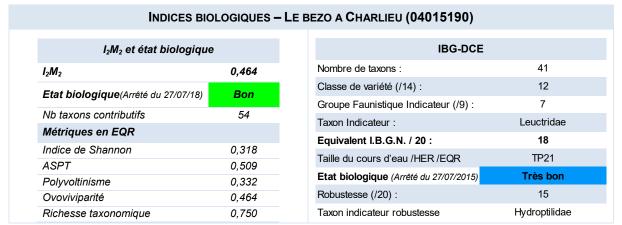


Figure 54 : Résultats biologiques I2M2 et IBG-DCE sur le Bezo à Charlieu (04015190)

Selon l'outil diagnostique, les pesticides et l'anthropisation du bassin versant ont une probabilité très forte (95% et 96%) d'exercer une pression sur le peuplement macrobenthique du Bezo.

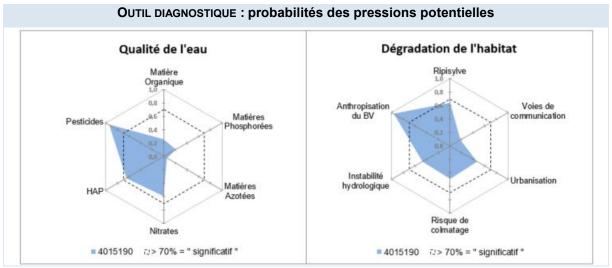


Figure 55 : Outil diagnostique sur le Bezo à Charlieu (04015190)

VI.1.14.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur Bezo à Charlieu.

Tableau 30 : Synthèse des résultats physico-chimiques et biologiques sur le Bezo à Charlieu (04015190)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio	logique	Etat écologique
04015190	Très bon	Bon	Moyen	Bon	Bon	Bon	Très bon	Bon

VI.1.15 <u>Le Sornin à Charlieu (04015300)</u>

Cette station a été suivie dans le cadre du réseau de l'Agence de l'Eau.

VI.1.15.1 <u>Description de la station</u>

Le Sornin à Charlieu est situé en aval de l'agglomération, en amont de la confluence avec le Chandonnet. Ce secteur correspond à l'aval du bassin versant. L'environnement est urbain et prairial.

Figure 56 : Localisation du Sornin à Charlieu (04015300)

VI.1.15.2 Analyse de l'eau

Le tableau ci-dessous présente les données disponibles sur cette station.

Tableau 31 : Classe de qualité des paramètres physico-chimiques analysés sur le Sornin à Charlieu (04015300)

				SO	RNIN à CHARL 4015300	IEU			
		15-févr 12-avr 30-juin 17-août 27-oct 14-nov 22-déc							
Arrêté du 27/07/2018		13 1641	12 001	30 juiii	17 dode	27 000	111101	ZZ GCC	
Température de l'eau	°C	6,6	10,4	20,2	21,8	14,6	9,5	8,6	
pH sur le terrain	-	7,8	7,7	7,5	7,5	7,7	7,7	7,6	
Oxygénation :				•	,		•		
Oxygène dissous	mg/l O2	12,2	11,2	7,3	6,3	9,1	10,8	11,2	
Taux de saturation en oxygène	%	101,5	103,1	83,3	74,3	91,1	96,7	98,0	
Demande Biochimique en Oxygène (DBO5)	mg/l O2	0,6	1,6	1,1	2,9	1,1	0,8	1,2	
Carbone organique dissous (COD)	mg/l C	3,1	3,2	5,0	5,1	5,5	5,3	5,1	
Nutriments :									
Orthophosphates	mg/l PO4	0,08	0,10	0,36	0,55	0,36	0,18	0,12	
Phosphore total	mg/l P	0,079	0,053	0,169	0,259	0,133	0,078	0,095	
Ammonium	mg/l NH4+	0,05	0,01	0,11	0,25	0,06	0,03	0,08	
Nitrites	mg/l NO2-	0,04	0,04	0,11	0,13	0,03	0,04	0,07	
Nitrates	mg/l NO3-	8	7	6	4	6	8	12	
SEQ-Eau									
Azote Kjeldahl	mg/l N	0,55	0,50	0,77	0,80	0,56	0,50	0,75	
Conductivité brute	μS/cm	171	162	233	335	226	198	180	
Matières en suspension totales	mg/l	35	8	16	12	8	7	23	
Turbidité	NFU	32,0	10,0	11,5	6,3	7,5	7,4	17,4	
SEQ-Eau									
Température de l'air extérieur	°C	7,9	17	20,8	24,3	20,3	14,3	12,5	

D'après l'arrêté du 27 juillet 2018, sur l'année 2022, **l'état physico-chimique du Sornin à Charlieu est moyen** à cause du **déclassement de la température de l'eau, des orthophosphates et du phosphore total** en août. La qualité de l'eau est bonne lors des autres campagnes, on observe une baisse de l'oxygénation en période estivale et une hausse de la concentration en nutriments.

Selon le SEQ-Eau, en février, le taux de MES est trop élevé, la qualité est moyenne.

VI.1.15.3 Peuplement de macro-invertébrés

Seuls les résultats biologiques I2M2 sont disponibles sur cette station.

Selon l'Arrêté du 27/07/2018, **l'état biologique est bon** sur le Sornin à Charlieu, avec un I2M2 de 0,516/1. La richesse taxonomique est élevée (0,723/1) mais le peuplement n'est pas équilibré (indice de Shannon 0,243/1). La polluosensibilité des taxons est plutôt moyenne (ASPT 0,489/1).

I_2M_2 et état biologique								
I ₂ M ₂ 0,516								
Etat biologique (Arrêté du 27/07/18)	Bon							
Nb taxons contributifs	59							
Métriques en EQR								
Indice de Shannon	0,243							
ASPT	0,489							
Polyvoltinisme	0,461							
Ovoviviparité	0,658							
Richesse taxonomique	0.723							

Figure 57 : Résultats biologiques I2M2 sur le Sornin à Charlieu (04015300)

VI.1.15.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Sornin à Charlieu.

Tableau 32 : Synthèse des résultats physico-chimiques et biologiques sur le Sornin à Charlieu (04015300)

code	Température	Hq	Oxygénation Nutrime	Nutriments	Etat physico-	Etat bio	ologique	Etat
station	station	Pii		Nathinents	chimique	12M2	IBG-DCE	écologique
04015300	Moyen	Très bon	Bon	Moyen	Moyen	Bon	-	Moyen

VI.1.16 Le Chandonnet à Chandon (04410060)

VI.1.16.1 Description de la station

Le Chandonnet est un affluent rive gauche du Sornin, situé en aval du bassin versant. La station est localisée à Chandon, en partie intermédiaire du Chandonnet. Le cours d'eau traverse essentiellement des prairies, quelques zones d'habitations et terres agricoles sont présentes aux alentours. La ripisylve forme un cordon rivulaire. La largeur moyenne du ruisseau est de 2,5 m sur le site d'étude. Le faciès plat lentique domine (80%) et quelques radiers (20%) diversifient les vitesses de courant. Les pierres dominent 65% de recouvrement et sont accompagnées par six autres substrats.

Figure 58 : Localisation et prise de vue du Chandonnet à Chandon (04410060)

VI.1.16.2 Analyse de l'eau

Le tableau ci-dessous reprend l'ensemble des paramètres analysés sur cette station.

Tableau 33 : Classe de qualité des paramètres physico-chimiques analysés sur le Chandonnet à Chandon (04410060)

				-	T à CHANDON 0060		
		22/02/2022	12/04/2022	29/06/2022	17/08/2022	27/10/2022	21/12/2022
		LSE2202-33498	LSE2204-6565	LSE2206-7618	LSE2208-11803	LSE2210-7273	LSE2212-9568
Arrêté du 27/07/2018							
Température de l'eau	°C	7,2	10,6	17,4	21,0	14,2	9,1
pH sur le terrain	-	7,8	7,6	7,5	8,1	7,9	7,3
Oxygénation :							
Oxygène dissous	mg/I O2	11,8	10,8	9,0	9,4	9,7	10,7
Taux de saturation en oxygène	%	99,2	100,3	97,8	109,9	96,6	95,7
Demande Biochimique en Oxygène (D	E mg/l O2	0,7	0,5	0,6	1,4	0,7	0,8
Carbone organique dissous (COD)	mg/I C	2,7	2,0	3,7	<0,2	3,8	4,1
Nutriments :							
Orthophosphates	mg/I PO4	0,08	0,08	0,24	0,14	0,19	0,10
Phosphore total	mg/l P	0,053	0,051	0,092	0,083	0,062	0,044
Ammonium	mg/l NH4+	<0,05	<0,05	0,10	<0,05	<0,05	<0,05
Nitrites	mg/l NO2-	0,02	0,02	0,06	0,02	0,02	0,02
Nitrates	mg/I NO3-	10	9	7	7	7	18
SEQ-Eau	_		_	_	_	_	_
Azote Kieldahl	mg/l N	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Conductivité brute	μS/cm	149	166	239	313	263	191
Matières en suspension totales	mg/l	17	17	6	5	3	4
Turbidité	NFU	12,0	6,6	6,3	3,1	3,4	5,0
Autres :							
Température de l'air extérieur	°C	9,8	17	25,4	25,6	21,6	14
Débit instantané	m3/s	0,372	0,122	0,031	0,003	0,018	0,5

Selon l'arrêté du 27 juillet 2018, la qualité des paramètres physico-chimiques est bonne ou très bonne. Ainsi, sur l'année 2022, **l'état physico-chimique est bon** sur le Chandonnet à Chandon.

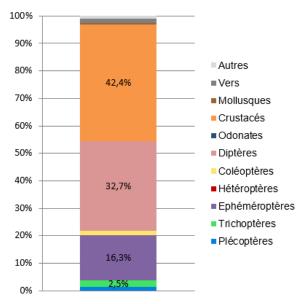
L'oxygénation de l'eau est toujours très bonne, ce sont principalement les composés phosphorés qui sont déclassés en bon état.

D'après le SEQ-Eau, toutes les analyses sont satisfaisantes.

VI.1.16.3 Peuplement de macro-invertébrés

Le peuplement macrobenthique du Chandonnet à Chandon est majoritairement dominé par deux taxons polluorésistants. Les crustacés Gammaridae constituent 42% des effectifs et les diptères Chironoomidaeont une abondance de 30,7%.

Puis viennent les organismes polluosensibles Leptophlebiidae (8,4%).


A noter la présence de l'écrevisse invasive *Pacifastacus leniusculus*.

Selon l'Arrêté du 27/07/2018, **l'état biologique est bon sur le Chandonnet à Chandon** avec un I2M2 de 0,577/1. La métrique la plus élevée est l'ASPT, reflétant une bonne polluosensibilité des taxons.

L'équivalent-IBGN est en accord avec l'I2M2 puisque la note de 16/20 traduit également un bon état biologique selon l'Arrêté du 27/07/2015. La variété taxonomique est satisfaisante (classe 10/14) et le GI 7/9 est validé par les Leuctridae et les Leptophlebiidae.

A noter la présence d'individus du GI 8 (Brachycentridae) en nombre insuffisant.

Figure 59 : Distribution taxonomique du Chandonnet à Chandon (04410060)

Gammaridae 42% ; Chironomidae 30,7% ; Leptophlebiidae 8,4% Baetidae 3,6% ; Heptageniidae 2,4%

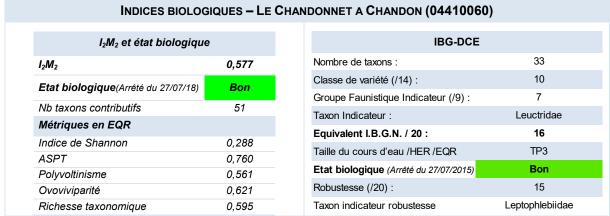


Figure 60 : Résultats biologiques I2M2 et IBG-DCE sur le Chandonnet à Chandon (04410060)

L'outil diagnostique, développé en complément de l'I2M2, indique que statistiquement, il est probable que les pesticides (p=72%) et l'anthropisation du bassin versant (p=68%) soient des pressions exercées sur le peuplement macrobenthique du Chandonnet à Chandon.

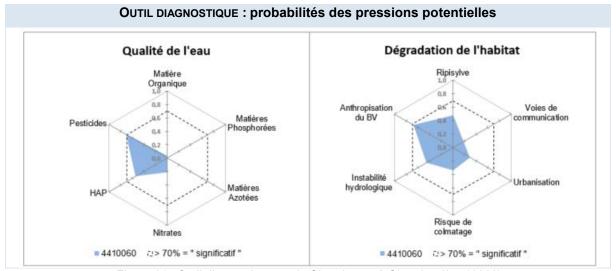


Figure 61 : Outil diagnostique sur le Chandonnet à Chandon (04410060)

VI.1.16.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Chandonnet à Chandon.

Tableau 34 : Synthèse des résultats physico-chimiques et biologiques sur le Chandonnet à Chandon (04410060)

code	Température	ture pH	Oxygénation	Oxygénation Nutriments	Etat physico-	Etat bio	ologique	Etat
station	oxygenation ivatiments	chimique	12M2	IBG-DCE	écologique			
04410060	Bon	Très bon	Très bon	Bon	Bon	Bon	Bon	Bon

VI.1.17 Le Chandonnet à Pouilly-sous-Charlieu (04015299)

VI.1.17.1 <u>Description de la station</u>

Le Chandonnet est un affluent rive gauche du Sornin, situé en aval du bassin versant. La station est localisée juste en amont de la confluence avec le Sornin. L'environnement est principalement composé de prairies et de quelques zones d'habitations. Le cordon de ripisylve offre un ombrage assez satisfaisant. Le Chandonnet mesure 2,5 m de large sur le site. Les vitesses d'écoulement sont plutôt lentes. Quelques radiers diversifient les écoulements. Les substrats sont variés et offrent de bonnes potentialités d'accueil pour les invertébrés benthiques. Les supports minéraux de types pierres et graviers dominent respectivement 50% et 37% de recouvrement.

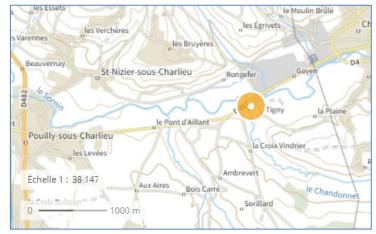


Figure 62: Localisation du Chandonnet à Pouilly-sous-Charlieu (04015299)

VI.1.17.2 <u>Analyse de l'eau</u>

Le tableau ci-dessous reprend l'ensemble des paramètres analysés sur cette station.

Les résultats sont similaires à la station précédente. Selon l'arrêté du 27 juillet 2018, sur l'année 2022, **l'état physico-chimique est bon** sur le Chandonnet à Pouilly-sous-Charlieu.

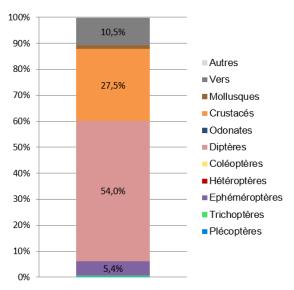
Les paramètres évalués selon le SEQ-Eau sont tous bons ou très bons.

Tableau 35 : Classe de qualité des paramètres physico-chimiques analysés sur le Chandonnet à Pouilly-sous-Charlieu (04015299)

			RSPP CHANDONNET à POUILLY-SOUS-CHARLIEU 4015299						
		22/02/2022	42/04/2022			27/40/2022	24 /42 /2022		
		22/02/2022	12/04/2022	30/06/2022	17/08/2022	27/10/2022	21/12/2022		
Arrêté du 27/07/2018		LSE2202-33484	LSE2204-6551	LSE2206-7604	LSE2208-11789	LSE2210-7259	LSE2212-9554		
	°C	7,0	10,2	10.4	10.5	14.2	10,0		
Température de l'eau	C		•	18,4	19,5	14,3			
pH sur le terrain	-	7,8	7,9	7,6	7,5	7,8	7,5		
Oxygénation :			1	1					
Oxygène dissous	mg/l O2	11,9	11,6	8,3	6,8	9,3	10,9		
Taux de saturation en oxygène	%	98,7	106,0	91,0	76,3	91,9	97,8		
Demande Biochimique en Oxygène	(DE mg/l O2	0,8	0,7	1,0	1,1	1,1	0,5		
Carbone organique dissous (COD)	mg/I C	2,3	2,6	3,8	<0,2	4,7	4,2		
Nutriments :									
Orthophosphates	mg/l PO4	0,06	0,06	0,16	0,10	0,12	0,07		
Phosphore total	mg/l P	0,046	0,037	0,081	0,051	0,057	0,035		
Ammonium	mg/l NH4+	<0,05	<0,05	0,07	<0,05	<0,05	<0,05		
Nitrites	mg/l NO2-	0,02	0,05	0,09	0,03	0,02	0,03		
Nitrates	mg/l NO3-	10	9	6	2	3	16		
SEQ-Eau									
Azote Kjeldahl	mg/l N	<0,5	0,50	<0,5	<0,5	<0,5	<0,5		
Conductivité brute	μS/cm	167	196	289	354	237	207		
Matières en suspension totales	mg/l	18	6	12	8	5	9		
Turbidité	NFU	15,0	4,5	15,0	1,3	7,5	7,4		
Autres :									
Température de l'air extérieur	°C	9,1	17	20,3	23,7	20,4	14,6		
Débit instantané	m3/s	0,548	0,184	0,038	0,008	0,03	0,279		

VI.1.17.3 Peuplement de macro-invertébrés

Le peuplement macrobenthique du Chandonnet à Pouillysous-Charlieu est déséquilibré par les diptères Chironomidae qui occupent 53,5% des effectifs. Communément appelés « vers de vase », ces organismes polluorésistants peuvent aussi bien vivre dans les eaux de bonne qualité que proliférer dans les milieux pollués.


A noter la présence de l'écrevisse invasive *Pacifastacus leniusculus*.

Selon l'Arrêté du 27/07/2018, **l'état biologique est moyen sur le Chandonnet à Pouilly-sous-Charlieu** avec un I2M2 de 0,415/1. Les métriques indiquent un peuplement peu diversifié et non équilibré. Néanmoins l'ASPT est élevé (0,792/1), reflétant une bonne polluosensibilité des taxons.

L'équivalent-IBGN traduit également un état biologique moyen selon l'Arrêté du 27/07/2015 avec une note de 13/20. La variété taxonomique est moyenne (classe 7/14) et le GI 7/9 est validé par les trichoptères Glossosomatidae.

L'indice est robuste car les éphéméroptères Leptophlebiidae confirment le GI 7.

Figure 63 : Distribution taxonomique du Chandonnet à Pouilly-sous-Charlieu (04015299)

Chironomidae 53,5%; Gammaridae 27,3%; OLIGOCHETES 10,4% Baetidae 2,2%; Sphaeriidae 1,5%

INDICES BIOLOGIQUES – LE CHANDONNET A POUILLY-SOUS-CHARLIEU (04015299)							
I₂M₂ et état biologique			IBG-DCE				
M_2	0,415		Nombre de taxons :	23			
Etat biologique(Arrêté du 27/07/18)	Moyen		Classe de variété (/14) :	7			
<u> </u>	•		Groupe Faunistique Indicateur (/9) :	7			
Nb taxons contributifs	39		Taxon Indicateur :	Glossosomatidae			
Métriques en EQR			Equivalent I.B.G.N. / 20 :	13			
ndice de Shannon	0,118		Taille du cours d'eau /HER /EOR	TP3			
ASPT	0,792		Taille du Cours d'éau/HER/EQR				
Polyvoltinisme	0,341		Etat biologique (Arrêté du 27/07/2015)	Moyen			
Ovoviviparité	0,436		Robustesse (/20):	13			
Richesse taxonomique	0,286		Taxon indicateur robustesse	Leptophlebiidae			

Figure 64 : Résultats biologiques I2M2 et IBG-DCE sur le Chandonnet à Pouilly-sous-Charlieu (04015299)

Selon le modèle statistique de l'outil diagnostique, les pressions avec une probabilité élevée sont les pesticides (72%) et l'anthropisation du bassin versant (70%).

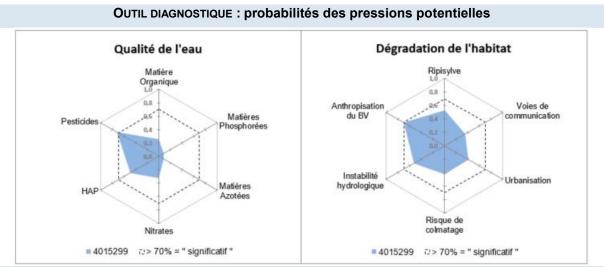


Figure 65 : Outil diagnostique sur le Chandonnet à Pouilly-sous-Charlieu (04015299)

VI.1.17.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Chandonnet à Pouilly-sous-Charlieu.

Tableau 36 : Synthèse des résultats physico-chimiques et biologiques sur le Chandonnet à Pouilly-sous-Charlieu (04015299)

code	code station Température pH	nН	Oxygénation	Nutriments	Etat physico-	Etat biologique		Etat
station		ρ			chimique	12M2	IBG-DCE	écologique
04015299	Très bon	Très bon	Bon	Bon	Bon	Moyen	Moyen	Moyen

VI.1.18 Le ruisseau d'Aillant à Pouilly-sous-Charlieu (04410006)

VI.1.18.1 <u>Description de la station</u>

Le ruisseau d'Aillant est un affluent rive gauche du Sornin, situé en aval du bassin versant. Il traverse essentiellement des prairies avec quelques terres agricoles. La station est localisée à 1,6 km en amont de la confluence avec le Sornin. Sur la station d'étude, le ruisseau mesure 1,2 m de large. L'ensoleillement est moyen, la ripisylve est plus ou moins clairsemée. Les vitesses de courant sont lentes voire nulles. Les pierres dominent (60%), accompagnées principalement de sables (20%) et de racines (10%).

Figure 66 : Localisation et prise de vue du Rau d'Aillant à Pouilly-sous-Charlieu (04410006)

VI.1.18.2 <u>Analyse de l'eau</u>

Le tableau ci-dessous reprend l'ensemble des paramètres analysés sur cette station.

Tableau 37 : Classe de qualité des paramètres physico-chimiques analysés sur le Rau d'Aillant à Pouilly-sous-Charlieu (04410006)

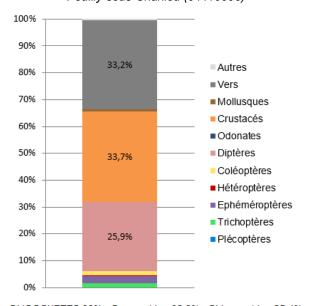
			/				
		RAU D'AILLANT À POUILLY-SOUS-CHARLIEU					
					0006	ı	ı
		22/02/2022	12/04/2022	30/06/2022	17/08/2022	27/10/2022	22/12/2022
		LSE2202-33485	LSE2204-6552	LSE2206-7605	LSE2208-11790	LSE2210-7260	LSE2212-9555
Arrêté du 27/07/2018							
Température de l'eau	°C	6,9	9,5	17,1	17,8	14,7	9,7
pH sur le terrain	-	7,8	7,9	7,7	7,4	7,7	7,6
<u>Oxygénation :</u>							
Oxygène dissous	mg/I O2	11,9	10,6	7,5	6,1	7,3	9,6
Taux de saturation en oxygène	%	98,5	95,8	81,2	66,6	73,3	86,0
Demande Biochimique en Oxygène (D	Emg/I O2	0,8	0,7	1,2	2,6	1,0	1,4
Carbone organique dissous (COD)	mg/I C	2,1	2,9	5,4	<0,2	6,1	4,6
Nutriments :							
Orthophosphates	mg/l PO4	0,11	0,17	0,23	0,24	0,24	0,17
Phosphore total	mg/l P	0,084	0,124	0,137	0,121	0,098	0,087
Ammonium	mg/l NH4+	<0,05	<0,05	<0,05	0,17	<0,05	0,06
Nitrites	mg/l NO2-	0,10	0,07	0,23	0,37	0,09	0,18
Nitrates	mg/l NO3-	13	14	16	16	10	17
SEQ-Eau							
Azote Kjeldahl	mg/l N	<0,5	0,86	0,68	1,20	0,90	0,68
Conductivité brute	μS/cm	214	344	449	454	445	318
Matières en suspension totales	mg/l	18	9	16	9	8	7
Turbidité	NFU	14,0	8,6	13,0	4,8	5,3	7,7
Autres :							
Température de l'air extérieur	°C	7,5	17	20,3	25,5	20,6	13,3
Débit instantané	m3/s	0,042	0,018	0,006	0,003	0,005	0,017

D'après l'arrêté du 27 juillet 2018, sur l'année 2022, **l'état physico-chimique du ruisseau d'Aillant à Pouilly-sous-Charlieu est moyen** en raison d'un **déclassement des nitrites et du taux de saturation en oxygène** en août, lorsque le débit est très faible.

Cette baisse de la qualité de l'eau en période estivale est vraisemblablement liée à l'**étiage sévère sur ce ruisseau**. On remarque également que les composés phosphorés et les nitrates sont en bon état et non en très bon état.

Les paramètres évalués selon le SEQ-Eau sont tous satisfaisants.

VI.1.18.3 Peuplement de macro-invertébrés


Les organismes polluorésistants dominent le peuplement macrobenthique du ruisseau d'Aillant. Les vers Oligochètes, les crustacés Gammaridae et les diptères Chironomidae sont les trois principaux taxons avec des abondances respectives de 33,0%, 32,9% et 25,4%.

A noter la présence de l'écrevisse invasive *Pacifastacus leniusculus*.

Selon l'Arrêté du 27/07/2018, **l'état biologique est moyen sur le ruisseau d'Aillant à Pouilly-sous-Charlieu** avec un I2M2 de 0,330/1. La richesse taxonomique est faible (0,263/1) et la communauté macrobenthique est peu équilibrée (0,146/1). La métrique la plus déclassante est le polyvoltinisme (0,134/1). Les taxons à cycle court sont favorisés dans le peuplement lorsque celui-ci subit des perturbations environnementales et anthropiques fortes.

L'équivalent-IBGN est en accord avec l'I2M2 puisqu'il traduit également un état biologique moyen selon l'Arrêté du 27/07/2015, avec une note de 9/20. La variété taxonomique est peu satisfaisante (classe 8/14) et c'est seulement le GI2/9 qui est validé par les Gammaridae.

Figure 67 : Distribution taxonomique du Rau d'Aillant à Pouilly-sous-Charlieu (04410006)

OLIGOCHETES 33% ; Gammaridae 32,9% ; Chironomidae 25,4% Baetidae 2,5% ; Elmidae 0,8%

Quelques individus Brachycentridae (GI 8), Leptophlebiidae (GI 7) et Ephemeridae (GI 6) ont été contactés mais ils ne sont pas suffisamment présents pour valider le GI correspondant.

INDICES BI	OLOGIQUES	6 – LE	RAU D'AILLANT (04410006)	
I₂M₂ et état biologique			IBG-DCE	
I ₂ M ₂	0,330		Nombre de taxons :	25
Etat biologique(Arrêté du 27/07/18)	Moven		Classe de variété (/14) :	8
<u> </u>			Groupe Faunistique Indicateur (/9) :	2
Nb taxons contributifs	33		Taxon Indicateur :	Gammaridae
Métriques en EQR			Equivalent I.B.G.N. / 20 :	9
Indice de Shannon	0,146		•	•
ASPT	0,594		Taille du cours d'eau /HER /EQR	TP17
Polyvoltinisme	0,134		Etat biologique (Arrêté du 27/07/2015)	Moyen
Ovoviviparité	0,454		Robustesse (/20):	8
Richesse taxonomique	0,263		Taxon indicateur robustesse	MOLLUSQUES

Figure 68 : Résultats biologiques I2M2 et IBG-DCE sur le Rau d'Aillant à Pouilly-sous-Charlieu (04410006)

Selon l'outil diagnostique, plusieurs pressions peuvent potentiellement impacter la macrofaune du Rau d'Aillant. Les probabilités les plus élevées sont liées aux pesticides (84%), à l'anthropisation du bassin versant (82%), aux HAP (73%) et à l'instabilité hydrologique (72%).

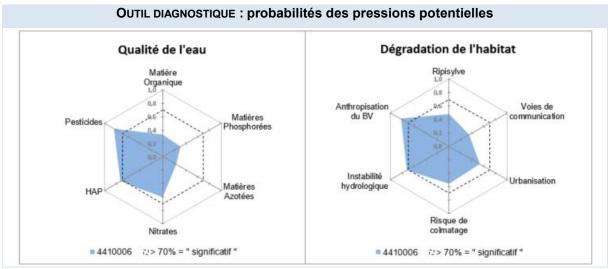


Figure 69 : Outil diagnostique sur le Rau d'Aillant à Pouilly-sous-Charlieu (04410006)

VI.1.18.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Rau d'Aillant à Pouilly-sous-Charlieu.

Tableau 38 : Synthèse des résultats physico-chimiques et biologiques sur le Rau d'Aillant à Pouilly-sous-Charlieu (04410006)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio	ologique IBG-DCE	Etat écologique
04410006	Très bon	Très bon	Moyen	Moyen	Moyen	Moyen	Moyen	Moyen

VI.2 Bassin Versant du Jarnossin

VI.2.1 Le Jarnossin à Villers (04014780)

VI.2.1.1 Description de la station

Le Jarnossin à Villers est situé en tête du bassin versant. L'environnement est principalement prairial et forestier. Quelques parcelles agricoles sont présentes aux alentours. La largeur moyenne du Jarnossin est de 1,9 m sur cette station. La ripisylve offre un ombrage assez important. La mosaïque d'habitat est hétérogène et les radiers sont majoritaires (70%).

Figure 70 : Localisation du Jarnossin à Villers (04014780)

VI.2.1.2 Analyse de l'eau

Le tableau ci-dessous présente l'ensemble des paramètres analysés sur cette station.

Tableau 39 : Classe de qualité des paramètres physico-chimiques analysés sur le Jarnossin à Villers (04014780)

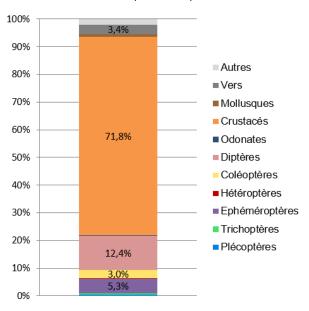
							· · · · · · · · · · · · · · · · · · ·	
		JARNOSSIN à VILLERS						
					4780			
		22/02/2022	12/04/2022	29/06/2022	16/08/2022	28/10/2022	22/12/2022	
		LSE2202-33495	LSE2204-6562	LSE2206-7615		LSE2210-7270	LSE2212-9565	
Arrêté du 27/07/2018	_							
Température de l'eau	°C	6,6	11,7	18,2		14,4	8,6	
pH sur le terrain	-	7,6	7,6	7,4		7,3	7,1	
Oxygénation :								
Oxygène dissous	mg/I O2	11,5	10,1	8,4		8,2	10,7	
Taux de saturation en oxygène	%	96,0	97,7	92,9		82,0	95,0	
Demande Biochimique en Oxygène (D	E mg/l O2	1,8	2,8	0,8		1,0	1,5	
Carbone organique dissous (COD)	mg/I C	2,9	4,1	5,2		5,6	5,1	
Nutriments :								
Orthophosphates	mg/I PO4	0,13	0,75	0,74		0,75	0,25	
Phosphore total	mg/I P	0,085	0,261	0,289		0,245	0,119	
Ammonium	mg/l NH4+	0,14	0,07	<0,05	40000	<0,05	<0,05	
Nitrites	mg/l NO2-	0,08	0,34	0,09	Assec	0,02	0,10	
Nitrates	mg/I NO3-	10	9	11		6	17	
				-				
SEQ-Eau								
Azote Kjeldahl	mg/l N	0,70	1,60	0,55		<0,5	0,67	
Conductivité brute	μS/cm	147	160	224		226	179	
Matières en suspension totales	mg/l	15	100	18		<2,0	6	
Turbidité	NFU	9,5	44,0	12,0		1,6	4,6	
Autres :								
Température de l'air extérieur	°C	7,4	17	25,2		19,9	12,9	
Débit instantané	m3/s	0,123	0,039	0,008		0,004	0,043	

Selon l'arrêté du 27 juillet 2018, sur l'année 2022, **l'état physico-chimique du Jarnossin à Villers est moyen** en raison d'un **déclassement des composés phosphorés (orthophosphates et phosphore total)** en avril, juin, et octobre. Les **nitrites** sont également en classe de qualité moyenne en avril.

L'étiage était particulièrement sévère en 2022, avec un très faible débit d'avril à octobre, et un **assec constaté en août**.

D'après le SEQ-Eau, en avril, le taux de MES est élevé (mauvaise qualité), impactant la turbidité de l'eau (moyenne qualité).

VI.2.1.3 Peuplement de macro-invertébrés


Le peuplement macrobenthique du Jarnossin à Villers est déséquilibré par une forte abondance de Gammaridae (67,7%). Ces crustacés sont détritivores de matières organiques grossières, friands de litières et de racines.

A noter la présence de l'écrevisse invasive *Pacifastacus leniusculus*.

Selon l'Arrêté du 27/07/2018, **l'état biologique est moyen sur le Jarnossin à Villers** avec un I2M2 de 0,383/1. La métrique la plus déclassante est l'indice de Shannon (0,097/1), reflétant le déséquilibre du peuplement. L'ASPT est la métrique la plus élevée (0,589/1), traduisant une polluosensibilité des taxons assez satisfaisante.

L'équivalent-IBGN traduit quant à lui un bon état biologique selon l'Arrêté du 27/07/2015 avec une note de 16/20. La variété taxonomique est bonne (classe 11/14) et le GI 7/9 est validé par les plécoptères Leuctridae et Leptophlebiidae. L'indice perd néanmoins un point lors du calcul de la robustesse car le retrait d'un taxon fait baisser la variété taxonomique à la classe inférieure.

Figure 71 : Distribution taxonomique du Jarnossin à Villers (04014780)

Gammaridae 67,7%; Chironomidae 11%; Asellidae 4,1%; OLIGOCHETES 3,4%; Elmidae 2,8%

INDICES BIOLO	ogiques – L	E JAR	NOSSIN A VILLERS (04014780)	
I₂M₂ et état biologique	•		IBG-DCE	
	0,383		Nombre de taxons :	33
t biologique(Arrêté du 27/07/18)	Moyen		Classe de variété (/14) :	10
biologique(Allete du 21/01/16)	Woyen		Groupe Faunistique Indicateur (/9) :	7
taxons contributifs	44		Taxon Indicateur :	Leuctridae
étriques en EQR			Equivalent I.B.G.N. / 20 :	16
dice de Shannon	0,097		•	
SPT	0,589		Taille du cours d'eau /HER /EQR	TP3
olyvoltinisme	0,384		Etat biologique (Arrêté du 27/07/2015)	Bon
voviviparité	0,330		Robustesse (/20):	15
Richesse taxonomique	0,476		Taxon indicateur robustesse	Leptophlebiid

Figure 72 : Résultats biologiques I2M2 et IBG-DCE sur le Jarnossin à Villers (04014780)

Selon le modèle statistique de l'outil diagnostique, les pressions les plus probables sont les pesticides (69%) et l'instabilité hydrologique (63%).

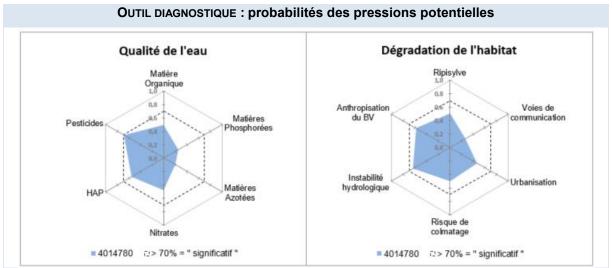


Figure 73 : Outil diagnostique sur le Jarnossin à Villers (04014780)

VI.2.1.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Jarnossin à Villers.

Tableau 40 : Synthèse des résultats physico-chimiques et biologiques sur le Jarnossin à Villers (04014780)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio	logique IBG-DCE	Etat écologique
04014780	Très bon	Très bon	Bon	Moyen	Moyen	Moyen	Bon	Moyen

VI.2.2 Le Jarnossin à Jarnosse (04410059)

VI.2.2.1 <u>Description de la station</u>

Le Jarnossin à Jarnosse est situé en amont du bassin versant. Il traverse principalement des prairies et quelques zones boisées. Sur le site d'étude, le ruisseau mesure 1,3 m de large. La ripisylve forme un rideau assez dense, l'ensoleillement est faible. Les pierres, les graviers et le sable sont les substrats dominants que l'on retrouve principalement sur un faciès lentique avec quelques radiers. Trois autres substrats minoritaires sont également présents et diversifient les zones d'habitats pour la macrofaune benthique.

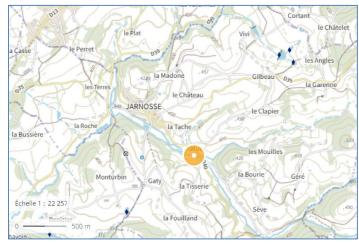


Figure 74: Localisation du Jarnossin à Jarnosse (04410059)

VI.2.2.2 Analyse de l'eau

Le tableau ci-dessous présente l'ensemble des paramètres analysés sur cette station.

Tableau 41 : Classe de qualité des paramètres physico-chimiques analysés sur le Jarnossin à Jarnosse (04410059)

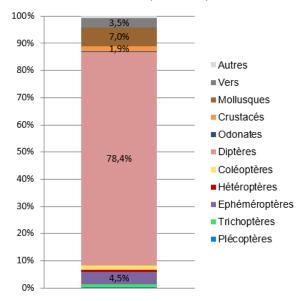
,	•		•				
				JARNOSSIN	à JARNOSSE		
				4410	0059		
		22/02/2022	12/04/2022	29/06/2022	16/08/2022	28/10/2022	22/12/2022
		LSE2202-33497	LSE2204-6564	LSE2206-7617		LSE2210-7272	LSE2212-9567
Arrêté du 27/07/2018							
Température de l'eau	°C	6,7	12,3	22,6		14,2	8,9
pH sur le terrain	-	7,2	7,4	7,2		7,1	6,8
Oxygénation :							
Oxygène dissous	mg/l O2	11,4	13,2	8,8		8,6	10,4
Taux de saturation en oxygène	%	95,3	123,1	108,4		86,6	92,1
Demande Biochimique en Oxygène (I	DE mg/l O2	1,3	0,9	1,0		0,6	1,1
Carbone organique dissous (COD)	mg/I C	2,9	3,5	3,8		4,1	3,7
Nutriments :							
Orthophosphates	mg/l PO4	0,04	0,04	0,08		0,05	0,04
Phosphore total	mg/l P	0,035	0,038	0,041		0,025	0,028
Ammonium	mg/l NH4+	<0,05	0,05	0,07	Assec	<0,05	<0,05
Nitrites	mg/l NO2-	<0,01	0,02	0,03	ASSEC	0,02	0,02
Nitrates	mg/l NO3-	8	5	4		7	18
SEQ-Eau							
Azote Kjeldahl	mg/l N	0,62	0,51	<0,5		<0,5	<0,5
Conductivité brute	μS/cm	107	108	140		142	138
Matières en suspension totales	mg/l	20	166	5		<2,0	4
Turbidité	NFU	10,0	12,0	4,3		0,9	3,7
			·	·			
Autres :							
Température de l'air extérieur	°C	7,4	18	27,2		22,2	12,7
Débit instantané	m3/s	0,144	0,035	0,007		0,009	0,058

Selon l'arrêté du 27 juillet 2018, sur l'année 2022, **l'état physico-chimique du Jarnossin à Jarnosse est moyen** en raison d'un **déclassement de la température de l'eau** en juin. La plupart des autres paramètres est classée en très bonne qualité.

Cette hausse de la température est vraisemblablement liée à l'étiage sévère de 2022, le cours d'eau étant en **assec** au mois d'août.

D'après le SEQ-Eau, lors des deux premières campagnes, la conductivité de l'eau paraît basse (qualité moyenne), elle reflète une faible minéralisation. En avril, le taux de MES est élevé (mauvaise qualité).

VI.2.2.3 Peuplement de macro-invertébrés


Les diptères Chironomidae déséquilibrent fortement le peuplement macrobenthique du Jarnossin à Jarnosse, avec une abondance de 76,5%. Communément appelés « vers de vase », ces organismes sont très résistants et peuvent aussi bien vivre dans les eaux de bonne qualité que proliférer dans les milieux pollués.

Selon l'Arrêté du 27/07/2018, **l'état biologique est moyen sur le Jarnossin à Jarnosse** avec un I2M2 de 0,405/1. Toutes les métriques constitutives de l'indice sont faibles à moynnes.

L'équivalent-IBGN traduit quant à lui un bon état biologique selon l'Arrêté du 27/07/2015 avec une note de 15/20. La variété taxonomique est correcte (classe 9/14) et le GI 7/9 est validé par les plécoptères Leuctridae.

L'indice est robuste puisque les éphéméroptères Leptophlebiidae confirment le GI 7.

Figure 75 : Distribution taxonomique du Jarnossin à Jarnosse (04410059)

Chironomidae 76,5%; Sphaeriidae 6,6%; OLIGOCHETES 3,4% Baetidae 3%; Gammaridae 1,6%

INDICES BIOLOGIQUES - LE JARNOSSIN A JARNOSSE (04410059) **IBG-DCE** I₂M₂ et état biologique Nombre de taxons : 32 I_2M_2 0,405 9 Classe de variété (/14) : Etat biologique (Arrêté du 27/07/18) Moyen Groupe Faunistique Indicateur (/9): 7 Nb taxons contributifs 40 Leuctridae Taxon Indicateur: Métriques en EQR 15 Equivalent I.B.G.N. / 20: Indice de Shannon 0.320 TP3 Taille du cours d'eau /HER /EQR **ASPT** 0.478 Etat biologique (Arrêté du 27/07/2015) Bon Polyvoltinisme 0,392 Robustesse (/20): 15 Ovoviviparité 0,430 Leptophlebiidae Taxon indicateur robustesse Richesse taxonomique 0,381

Figure 76 : Résultats biologiques I2M2 et IBG-DCE sur le Jarnossin à Jarnosse (04410059)

L'outil diagnostique met en évidence plusieurs pressions potentielles. Concernant la qualité de l'eau, les pesticides et la matière organique ont les probabilités les plus élevées (78% et 61%). Par rapport à la dégradation de l'habitat, l'instabilité hydrologique et la ripisylve sont également des altérations probables (64% et 61%).

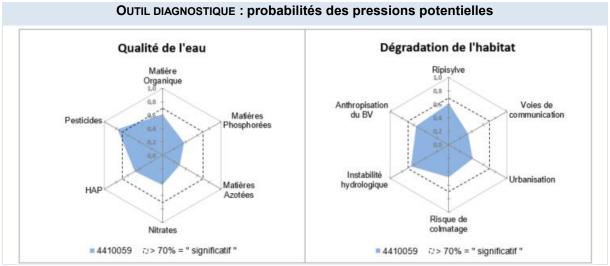


Figure 77 : Outil diagnostique sur le Jarnossin à Jarnosse (04410059)

VI.2.2.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Jarnossen à Jarnosse.

Tableau 42 : Synthèse des résultats physico-chimiques et biologiques sur le Jarnossin à Jarnosse (04410059)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio 12M2	logique IBG-DCE	Etat écologique	
04410059	Moyen	Très bon	Bon	Bon	Moyen	Moyen	Bon	Moyen	

VI.2.3 Le Jarnossin à Coutouvre (04014800)

VI.2.3.1 Description de la station

Le Jarnossin à Coutouvre est situé en partie médiane du bassin versant. Il traverse principalement des prairies et quelques zones boisées. Sa largeur moyenne est de 1,3 m sur cette station. La ripisylve forme un rideau assez dense, permettant un bon ombrage. La granulométrie grossière domine la moitié de la mosaïque d'habitats. Les vitesses de courants sont variées et la diversité des autres substrats offrent différentes zones de refuge et de nourriture pour les invertébrés benthiques.

Figure 78 : Localisation du Jarnossin à Coutouvre (04014800)

VI.2.3.2 Analyse de l'eau

Le tableau ci-dessous présente l'ensemble des paramètres analysés sur cette station.

Tableau 43 : Classe de qualité des paramètres physico-chimiques analysés sur le Jarnossin à Coutouvre (04014800)

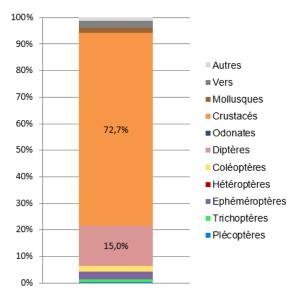
				JARNOSSIN à	COUTOUVRE		
				4014	1800		
		22/02/2022	12/04/2022	30/06/2022	17/08/2022	28/10/2022	22/12/2022
		LSE2202-33496	LSE2204-6563	LSE2206-7616	LSE2208-11801	LSE2210-7271	LSE2212-9566
Arrêté du 27/07/2018							
Température de l'eau	°C	6,4	11,6	16,5	17,2	14,3	8,3
pH sur le terrain	-	7,7	8,4	7,5	7,5	7,5	7,2
Oxygénation :							
Oxygène dissous	mg/I O2	11,7	11,6	8,2	7,5	7,9	10,8
Taux de saturation en oxygène	%	96,3	110,6	88,1	81,9	79,0	94,3
Demande Biochimique en Oxygène (D	E mg/l O2	1,0	1,0	1,2	2,0	0,8	1,1
Carbone organique dissous (COD)	mg/I C	3,5	3,9	4,3	0,7	4,7	4,6
Nutriments :							
Orthophosphates	mg/I PO4	0,11	0,19	0,68	0,66	0,46	0,20
Phosphore total	mg/l P	0,066	0,084	0,231	0,201	0,154	0,081
Ammonium	mg/l NH4+	0,06	<0,05	<0,05	<0,05	<0,05	0,05
Nitrites	mg/I NO2-	0,05	0,07	0,06	0,04	0,02	0,09
Nitrates	mg/I NO3-	8	7	12	19	10	18
SEQ-Eau							
Azote Kjeldahl	mg/l N	<0,5	<0,5	<0,5	<0,5	<0,5	0,53
Conductivité brute	μS/cm	149	155	262	441	260	183
Matières en suspension totales	mg/l	16	5	8	6	<2,0	4
Turbidité	NFU	12,0	4,3	12,0	3,7	1,0	3,2
Autres:							
Température de l'air extérieur	°C	7,2	19	17,2	26,4	19,6	11,4
Débit instantané	m3/s	0,297	0,124	0,014	0,001	0,028	0,212

Selon l'arrêté du 27 juillet 2018, sur l'année 2022, **l'état physico-chimique du Jarnossin à Coutouvre est moyen** en raison d'un **déclassement des composés phosphorés (orthophosphates et phosphore total)** en avril et en août, lorsque le débit est le plus faible.

Tous les autres paramètres sont classés en bon ou très bon état. On observe une légère baisse de l'oxygénation de l'eau de juin à octobre.

Les paramètres évalués selon le SEQ-Eau sont tous satisfaisants.

VI.2.3.3 Peuplement de macro-invertébrés


Les crustacés Gammaridae dominent fortement (72,6%) la communauté macrobenthique du Jarnossin à Coutouvre. Ces crustacés sont détritivores de matières organiques grossières. A noter la présence de l'écrevisse invasive *Pacifastacus leniusculus*.

Selon l'Arrêté du 27/07/2018, **l'état biologique est moyen sur le Jarnossin à Coutouvre** avec un l2M2 de 0,398/1. La métrique la plus déclassante est l'indice de Shannon (0,030/1), reflétant le déséquilibre du peuplement. L'ASPT est la métrique la plus élevée (0,716/1), traduisant une bonne polluosensibilité des taxons.

L'équivalent-IBGN traduit également un état biologique moyen selon l'Arrêté du 27/07/2015 avec une note de 14/20. La variété taxonomique est moyenne (classe 8/14) et le GI 7/9 est validé par les éphéméroptères Leptophlebiidae.

L'indice perd un point lors du calcul de la robustesse car c'est le GI 6 qui est validé en second (Ephemeridae). A noter la présence de quelques individus Leuctridae (GI 7).

Figure 79 : Distribution taxonomique du Jarnossin à Coutouvre (04014800)

Gammaridae 72,6% ; Chironomidae 13,5% ; OLIGOCHETES 2,4% Sphaeriidae 1,7% ; Elmidae 1,7%

INDICES BIOLOG	QUES – LE	JARN	OSSIN A COUTOUVRE (04014800)	
l₂M₂ et état biologique			IBG-DCE	
I_2M_2	0,398		Nombre de taxons :	27
Etat biologique(Arrêté du 27/07/18)	Moven		Classe de variété (/14) :	8
	•		Groupe Faunistique Indicateur (/9) :	7
Nb taxons contributifs	35		Taxon Indicateur :	Leptophlebiidae
Métriques en EQR			Equivalent I.B.G.N. / 20 :	14
Indice de Shannon	0,030		•	TP3
ASPT	0,716		Taille du cours d'eau /HER /EQR	IFS
Polyvoltinisme	0,479		Etat biologique (Arrêté du 27/07/2015)	Moyen
Ovoviviparité	0,380		Robustesse (/20):	13
Richesse taxonomique	0,262		Taxon indicateur robustesse	Ephemeridae

Figure 80 : Résultats biologiques I2M2 et IBG-DCE sur le Jarnossin à Coutouvre (04014800)

Selon l'outil diagnostique, plusieurs altérations sont probables. On distingue les pesticides (72%), l'anthropisation du bassin versant (67%), les HAP (63%) et l'instabilité hydrologique (61%).

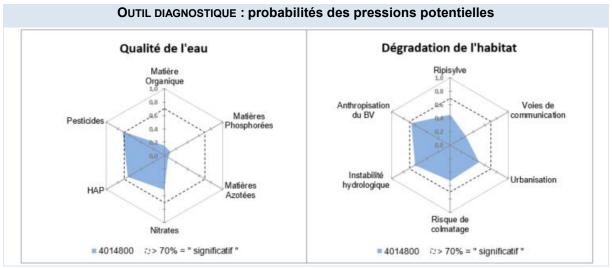


Figure 81 : Outil diagnostique sur le Jarnossin à Coutouvre (04014800)

VI.2.3.4 Synthèse

Le tableau ci-dessous synthétise les classes d'état des éléments de qualité physico-chimique et biologique sur le Jarnossin à Coutouvre.

Tableau 44 : Synthèse des résultats physico-chimiques et biologiques sur le Jarnossin à Coutouvre (04014800)

code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio	logique IBG-DCE	Etat écologique	
04014800	Très bon	Bon	Bon	Moyen	Moyen	Moyen	Moyen	Moyen	

VI.2.4 Le Jarnossin à Pouilly-sous-Charlieu (04014900)

Cette station a été suivie dans le cadre du réseau de l'Agence de l'Eau.

VI.2.4.1 Description de la station

Le Jarossin à Pouilly-sous-Charlieu se situe en aval du bassin versant. La station est localisée en amont de la confluence avec la Loire et en amont de la confluence avec le Colombier (affluent rive gauche). L'environnement est principalement urbain, prairial puis agricole.

Figure 82 : Localisation du Jarnossin à Pouilly-sous-Charlieu (04014900)

VI.2.4.2 Analyse de l'eau

Le tableau ci-dessous présente les données disponibles cette station.

Tableau 45 : Classe de qualité des paramètres physico-chimiques analysés sur le Jarnossin à Pouilly-sous-Charlieu (04014900)

		JARNOSSIN à POUILLY-SOUS-CHARLIEU				
			4014900			
		28/10/2022	14/11/2022	22/12/2022		
Arrêté du 27/07/2018						
Température de l'eau	°C	14,9	9,7	9,0		
pH sur le terrain	-	7,8	7,9	7,5		
Oxygénation :						
Oxygène dissous	mg/I O2	8,4	10,5	11,0		
Taux de saturation en oxygène	%	84,7	94,6	97,0		
Demande Biochimique en Oxygène (DBO5)	mg/I O2	1,5	0,5	1,4		
Carbone organique dissous (COD)	mg/I C	4,5	4,3	4,4		
<u>Nutriments :</u>						
Orthophosphates	mg/l PO4	0,25	0,27	0,21		
Phosphore total	mg/l P	0,085	0,099	0,087		
Ammonium	mg/l NH4+	0,01	0,01	0,02		
Nitrites	mg/l NO2-	0,02	0,02	0,05		
Nitrates	mg/I NO3-	4	9	17		
SEQ-Eau	_		_	-		
Azote Kjeldahl	mg/l N	0,50	0,50	0,57		
Conductivité brute	μS/cm	375	337	234		
Matières en suspension totales	mg/l	2	3	9		
Turbidité	NFU	4,0	5,0	10,3		
SEQ-Eau						
Température de l'air extérieur	°C	23,2	14	13,1		

Sur les trois campagnes disponibles, selon l'arrêté du 27 juillet 2018, les paramètres analysés sont tous en très bon ou bon état. Ce sont principalement les composés phosphorés qui sont systématiquement déclassés en bon état. L'état physico-chimique est indéterminé sur le Jarnossin à Pouilly-sous-Charlieu, car un minimum de 4 campagnes est nécessaire pour définir l'état physico-chimique.

Les paramètres évalués selon le SEQ-Eau sont également satisfaisants sur ces trois campagnes.

VI.2.4.3 Peuplement de macro-invertébrés

Aucune donnée biologique n'est disponible sur le Jarnossin à Pouilly-sous-Charlieu.

VI.2.4.4 Synthèse

L'état physico-chimique ne peut être établit sur seulement 3 campagnes de prélèvements et les résultats biologiques ne sont pas disponibles.

VII Synthèse de la qualité du Sornin et du Jarnossin

VII.1.1 Etat physico-chimique

La carte ci-dessous présente la qualité physico-chimique des stations étudiées sur les bassins versants du Sornin et du Jarnossin, selon l'arrêté du 27 juillet 2018.

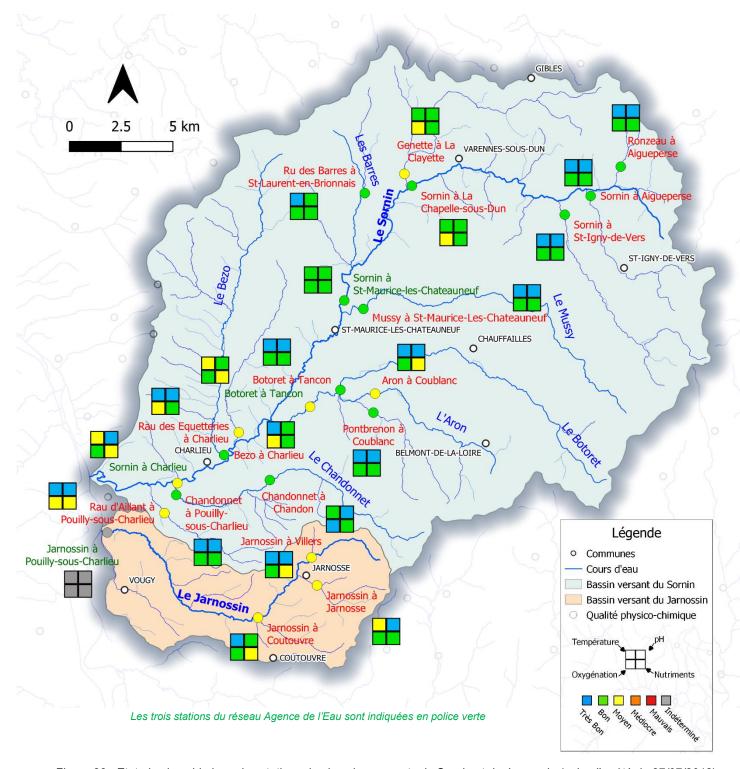


Figure 83 : Etat physico-chimique des stations des bassins versants du Sornin et du Jarnossin (selon l'arrêté du 27/07/2018)

Sur les 22 stations analysées, **12 stations se caractérisent par un bon état physico-chimique** selon l'Arrêté du 27/07/2018.

Lors de la campagne d'août, 4 stations étaient en assec et sont précisées ci-dessous :

- Le Pontbrenon à Coublanc (04410038),
- Le Rau des Equetteries à Charlieu (04015160),
- Le Jarnossin à Villers (04014780),
- Le Jarnossin à Jarnosse (04410059).

Sur le Jarnossin à Pouilly-sous-Charlieu, la classe d'état est indéterminée car seules 3 campagnes sont disponibles (octobre, novembre, décembre). Cette station étant suivie par l'Agence de l'Eau, les données sont probablement en cours de bancarisation.

Au total, **9 stations sont caractérisées par un état physico-chimique moyen**. Sur le bassin versant du Sornin, ce sont les 6 sites suivants :

- <u>La Genette à La Clayette (</u>04015025) : déclassement lié à l'oxygénation (taux de COD trop élevé en août et décembre).
- <u>L'Aron à Coublanc</u> (04410029): forte concentration en composés phosphorés (orthophosphates et phosphore total) en août.
- <u>Le Botoret à Tancon</u> (04410026, suivi Agence de l'Eau) : déclassement dû au phosphore total en juin et à la température de l'eau en août.
- <u>Le Rau des Equetteries à Charlieu</u> (04015160) : faible oxygénation de l'eau en juin et octobre (paramètres COD et taux de saturation en oxygène).
- <u>Le Sornin à Charlieu</u> (04015300, suivi Agence de l'Eau) : forte concentration en composés phosphorés en août et température de l'eau trop élevée.
- <u>Le Rau d'Aillant à Pouilly-sous-Charlieu</u> (04410006) : déclassement lié aux nitrites et à un faible taux de saturation en oxygène en août.

Globalement sur le bassin versant du Sornin, c'est principalement sur le secteur aval (et la Genette en amont) que l'état physico-chimique est moyen. Ce déclassement a lieu principalement en période d'étiage, lorsque les conditions hydrologiques sont les plus défavorables. L'oxygénation devient parfois insuffisante et la température de l'eau trop excessive. Soulignons que l'année 2022 a subi un étiage particulièrement sévère. Ainsi, la charge polluante est davantage concentrée avec les faibles débits. La teneur en composés phosphorés devient trop élevée sur certains secteurs (Aron, Botoret à Tancon, Sornin à Charlieu). Le Rau d'Aillant présente également une altération liée aux nitrites.

De plus, une perturbation d'origine organique est identifiée sur la Genette et le Rau des Equetteries (COD).

Sur le bassin versant du Jarnossin, les trois stations suivantes ont une qualité physico-chimique moyenne :

- <u>Le Jarnossin à Villers</u> (04014780) : forte concentration en composés phosphorés en avril, juin et octobre + taux de nitrites élevé en avril.
- Le Jarnossin à Jarnosse (04410059) : déclassement lié à une trop forte température de l'eau en juin.
- <u>Le Jarnossin à Coutouvre</u> (04014800) : les taux d'orthophosphates et de phosphore total sont élevés en juin et en août.

Sur le Jarnossin, le déficit hydrologique se fait bien ressentir avec des assecs sur les deux stations amont, et la pression liée aux composés phosphorés est bien présente en période de basses eaux sur les stations à Villers et à Coutouvre.

VII.1.2 Etat biologique

La carte ci-dessous présente l'état biologique des stations étudiées sur les bassins versants du Sornin et du Jarnossin, selon les indicateurs I2M2 (arrêté du 27/07/18) et IBG-DCE (arrêté du 27/07/15).

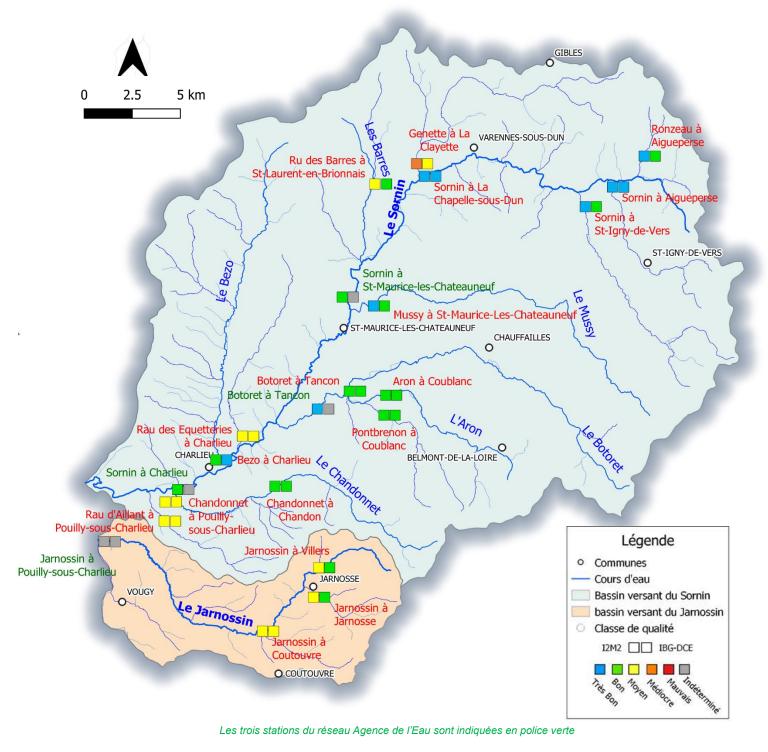


Figure 84 : Etat biologique (I2M2 et IBG-DCE) des stations des bassins versants du Sornin et du Jarnossin

Pour les 4 stations suivies par l'Agence de l'Eau, seules les données I2M2 sont disponibles et le Jarnossin à Pouilly-sous-Charlieu ne dispose pas de résultat biologique.

Concernant l'évolution entre les deux indices biologiques, globalement l'I2M2 est plutôt bien en accord avec l'IBG-DCE sur l'atteinte ou non du bon état. Seules 3 stations font exception, où l'état est moyen avec l'I2M2 et bon avec l'IBG-DCE (Jarnossin à Villers, Jarnossin à Jarnosse et Ru des Barres).

L'I2M2 étant l'outil d'évaluation en vigueur pour définir l'état biologique. La synthèse ci-dessous porte sur cet indicateur.

Sur les 21 stations où les données sont disponibles, 13 stations atteignent le bon état biologique dont 6 stations qualifiées en très bon état. L'état biologique moyen est obtenu sur 7 stations et 1 station est en état médiocre.

Sur le bassin versant du Sornin, 1 station est qualifiée par un état biologique médiocre :

- <u>La Genette à La Clayette</u> (04015025) : le peuplement macrobenthique est moyennement diversifié et seuls 6 individus polluosensibles (Leuctridae) sont présents. Selon l'outil diagnostique, les pressions potentielles peuvent à la fois être liées à la qualité de l'eau (pesticides, HAP, nitrates) et à la dégradation de l'habitat (anthropisation du bassin versant, urbanisation, risque de colmatage, instabilité hydrologique).

4 stations se caractérise par un état biologique moyen :

- <u>Le ruisseau des Barres</u> (04410031) : la communauté macrobenthique est déséquilibrée par des organismes polluorésistants (Gammaridae), la polluosensibilité des taxons est assez faible mais la richesse taxonomique est bonne. Les pressions les plus probables qui ressortent de l'outil diagnostique sont les pesticides, les HAP et l'anthropisation du bassin versant.
- <u>Le ruisseau des Equetteries</u> (04015160),
- <u>Le Chandonnet à Pouilly-sous-Charlieu</u> (04015299), Sur ces deux stations, la polluosensibilité des taxons est satisfaisante mais le peuplement est moyennement diversifié et dominé par des organismes polluorésistants. Selon l'outil diagnostique, les pesticides et l'anthropisation du bassin versant ont les plus grandes probabilités de pressions.
- <u>Le ruisseau d'Aillant à Pouilly-sous-Charlieu</u> (04410006): la variété taxonomique est modérée et la macrofaune est déséquilibrée par des taxons polluorésistants. Les individus polluosensibles sont faiblement représentés. Selon l'outil diagnostique, les pressions potentielles peuvent être dues aux pesticides, à l'anthropisation du bassin versant, aux HAP et à l'instabilité hydrologique.

Globalement sur le bassin versant du Sornin, les stations où le bon état biologique n'est pas atteint se concentrent principalement sur la partie aval (Rau des Equetteries, Chandonnet à Pouilly-sous-Charlieu et Rau d'Aillant) et sur deux affluents rive droite en partie intermédiaire (Genette et Ru des Barres).

Sur le bassin versant du Jarnossin, 3 stations présentent un état biologique moyen :

- <u>Le Jarnossin à Villers</u> (04014780) : la polluosensibilité est satisfaisante mais le peuplement est déséquilibré par des organismes polluorésistants (Gammaridae). Selon l'outil diagnostique, les pressions les plus probables sont les pesticides et l'instabilité hydrologique.
- <u>Le Jarnossin à Jarnosse</u> (04410059) : Toutes les métriques sont faibles à moyennes. Diverses pressions sont mises en évidence par l'outil diagnostique (pesticides, instabilité hydrologique puis matière organique et ripisylve).
- Le Jarnossin à Coutouvre (04014800) : la communauté macrobenthique est similaire à la station du Jarnossin à Villiers. S'ajoutent les pressions potentielles par les HAP et l'anthropisation du bassin versant.

Les trois stations du Jarnossin reflètent une altération des peuplements macrobenthiques dès l'amont du bassin versant. L'instabilité hydrologique et les pesticides sont les pressions qui ressortent systématiquement par l'outil diagnostique.

VIII Conclusion

La carte ci-dessous synthétise l'état écologique évalué à partir des données physico-chimiques et biologiques (I2M2) sur les stations des bassins versants du Sornin et du Jarnossin.

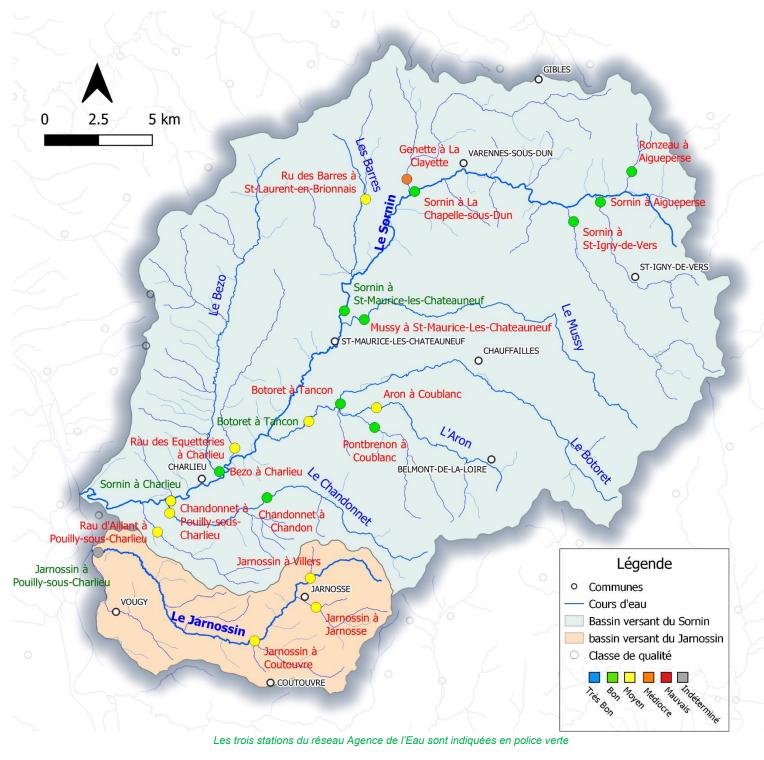


Figure 85 : Etat écologique des stations des bassins versants du Sornin et du Jarnossin

Rappelons tout d'abord que l'année 2022 se caractérise par une hydrologie particulièrement sévère. Les débits étaient très faibles lors de certaines campagnes et l'étiage estivale a été marqué par des assecs pour certaines stations (Pontbrenon, Rau des Equetteries, Jarnossin à Villers et Jarnossin à Jarnosse).

Sur les 21 stations étudiées (données insuffisantes sur le Jarnossin à Pouilly-sous-Charlieu), **10 stations répondent** à l'objectif de bon état écologique.

1 station est qualifiée par un état écologique médiocre :

nom station	code	Température	На	Oxygénation	Nutriments	Etat physico-	Etat biologique		Etat
Hom station	station	remperature	рп	Oxygenation	Nutriments	chimique	12M2	IBG-DCE	écologique
GENETTE A LA CLAYETTE	04015025	Bon	Bon	Moyen	Bon	Moyen	Médiocre	Moyen	Médiocre

10 stations se caractérisent par un état écologique moyen :

nom station	code station	Température	рН	Oxygénation	Nutriments	Etat physico- chimique	Etat bio	logique IBG-DCE	Etat écologique
RU DES BARRES A ST LAURENT EN B.	04410031	Très bon	Bon	Bon	Bon	Bon	Moyen	Bon	Moyen
ARON A COUBLANC	04410029	Très bon	Très bon	Bon	Moyen	Moyen	Bon	Bon	Moyen
BOTORET A TANCON	04410026	Moyen	Bon	Bon	Moyen	Moyen	Très bon	-	Moyen
RAU DES EQUETTERIES À CHARLIEU	04015160	Très bon	Très bon	Moyen	Bon	Moyen	Moyen	Moyen	Moyen
SORNIN A CHARLIEU	04015300	Moyen	Très bon	Bon	Moyen	Moyen	Bon	-	Moyen
CHANDONNET à POUILLY-SCHARLIEU	04015299	Très bon	Très bon	Bon	Bon	Bon	Moyen	Moyen	Moyen
RAU D'AILLANT À POUILLY-SCHARLIEU	04410006	Très bon	Très bon	Moyen	Moyen	Moyen	Moyen	Moyen	Moyen
JARNOSSIN à VILLERS	04014780	Très bon	Très bon	Bon	Moyen	Moyen	Moyen	Bon	Moyen
JARNOSSIN A JARNOSSE	04410059	Moyen	Très bon	Bon	Bon	Moyen	Moyen	Bon	Moyen
JARNOSSIN à COUTOUVRE	04014800	Très bon	Bon	Bon	Moyen	Moyen	Moyen	Moyen	Moyen

Pour conclure, sur le bassin versant du Sornin, le déclassement de l'état écologique se rencontre principalement sur la partie aval du Sornin et sur ses affluents situés en partie médiane (Genette, Ru des Barres) et aval (Aron, Botoret, Rau des Equetteries, Chandonnet, Rau d'Aillant). Les paramètres mis en cause sont :

- La dégradation des peuplements macrobenthiques : sur la Genette, le Ru des Barres, le Rau des Equetteries, le Chandonnet, le Ru d'Aillant.
- L'oxygénation de l'eau (O₂, taux de saturation en O₂) : sur le Rau des Equetteries, le Rau d'Aillant.
- La température de l'eau : sur le Botoret, le Sornin aval.
- La matière organique (COD) : sur la Genette, le Rau des Equetteries.
- Les composés phosphorés (PO₄³⁻, Ptot) : sur l'Aron, le Botoret, le Sorin aval.
- Les nitrites (NO₂₋): sur le Rau d'Aillant.

Sur le Jarnossin, les 3 stations étudiées présentent à la fois une altération de la qualité de l'eau et une perturbation des peuplements macrobenthiques. Les éléments physico-chimiques imputables sont :

- Les composés phosphorés (PO₄³-, Ptot) : sur le Jarnossin à Villers et à Coutouvre.
- Les nitrites (NO₂₋): sur le Jarnossin à Villers.
- La température de l'eau : sur le Jarnossin à Jarnosse.

Sur la plupart des sites d'études, les déclassements sont souvent observés en période de basses eaux, lorsque les conditions hydrologiques sont les plus critiques.

IX ANNEXES

➤ Rapports d'essais I2M2 / IBG-DCE

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 25/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7698

Nom du client : SYMISOA

Ronzeau à Aigueperse - 04410053

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ed	chantillonnage	Analyse				
Date et heure :	13/06/2022 de 10h à 11h30	Date :	11 et 12/03/2023			
Organisme et Opérateur terrain :	P. Weber & P. Porcherot / CARSO	Organisme et Opérateur labo :	P. Weber / CARSO			

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le Ronzeau à Aigueperse (04410053).

→ RESULTATS DE L'ANALYSE

• I_2M_2 :

Station	le Ronzeau à Aigueperse
I_2M_2	0,745
Etat biologique*	Très bon

^{*} suivant l'arrêté du 27 juillet 2018

• <u>IBG-DCE</u>:

	Le Ronzeau à Aiç	gueperse
Nombre de taxons :	36	
Classe de variété (/14) :	10	
Groupe Faunistique Indicateur (/9) :	7	
Taxon Indicateur :	Leuctrida	е
Equivalent-IBGN /20 :	16	
Taille du cours d'eau /HER /EQR	TP3	0,83333
Etat biologique *	Bon	

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

			igueperse 6-7698	
Commune:	Aigueperse	Coordonnées (Lambert 93)	Amont	Aval
Département :	Rhône (69)	X	810448	810440
Hydro- écorégion :	HER 3 : Massif central Sud	Υ	6577135	6577109

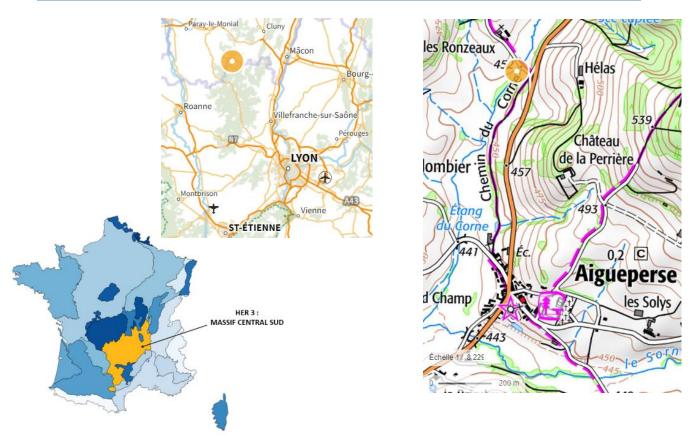


Figure 1 : Localisation de la station d'échantillonnage

Photos de la station :

Amont de la station

Aval de la station

→ DESCRIPTION DE LA STATION LE RONZEAU A AIGUEPERSE LSE2206-7698

- Conditions environnementales

Accessibilité: -

Météo : temps sec ensoleillé Ensoleillement : Moyen Teinte de l'eau : incolore

Hydrologie : Basses eaux Visibilité du fond : Bonne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite	
Lit majeur		Prairie	Prairie	
Porgos	nature	Naturelle	Naturelle	
Berges	pente	Pente moyenne	Pente moyenne	
Dinioulus	état	Dense, Clairsemée	Dense	
Ripisylve	type	Herbacée, Arbustive, Arborescente	Herbacée	

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficulténon

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...): Ephemera relâchés en phase C:3

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonico	oles (°C)	16,3	Très bon
eaux cyprinico	oles (°C)	16,3	Très bon
Oxygène dissous	(mg O2/L)	8,91	Très bon
Saturation en O2 diss	ous (%)	94,4	Très bon
Conductivité	(µS/cm)	108,2	*
pH	(unité de pH)	7,32	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 1,1 m Largeur plein bord Lpb:1,3 m

Longueur de la station : 24 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 20% Plat lentique, 40% Plat courant, 40% Radier,

CARSO-LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

→ GRILLE D'ECHANTILLONNAGE LE RONZEAU A AIGUEPERSE LSE2206-7698

Recouvrement of	des su	bstrats					Classes	de vites	sse_		
(surface relative	(surface relative sur la station)					Moyenne		Lente		Nulle	
en fonction des cla	isses (de vitess	se	V	≥ 75 cm/s	25 ≤	V < 75 cm/s N5	5≤	V < 25 cm/s	V < 5 cm/s	
	l	I	Dominant	ordre	N6	ordre	No	ordre	N3	ordre	N1
Nature du substrat	code Sandre	% de recouvrt	(D) Marginal (M) Présent	hiéra- rchiqu e	n° prelev	hiéra- rchiqu e	n° prelev	hiéra- rchiqu e	n° prelev	hiéra- rchiqu e	n° prelev
Bryophytes	S1	1	М			+	A1				
Spermaphytes immergés (hydrophytes)	S2										
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3										
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	2	М					+	A2		
Sédiments minéraux de grande taille, pierres- galets (25 à 250 mm)	S24	69	D			+++	B5 C9	++	B7 C10	+	B8 C11
Blocs facilement déplaçables (>250 mm)	S30	2	M					+	A3		
Graviers (2,5 à 25 mm)	S9	3	М					+	A4		
Spermaphytes émergents (hélophytes)	S10	2	М			++		+			
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11										
Sables (< 2 mm) - Limons	S25	20	D					++	В6	+	C12
Algues - bactéries et champignons filamenteux	S18										
Surfaces uniformes dures naturelles ou artificielles	S29	1	М			++		+			

Total 100 %

- Description des prélèvements élémentaires

	Matterial Colmatage Cod									
N°	N° Phase Substrat		Substrat	vitesse		Matériel	Hauteur	(nature /		codes : Intensité
1,4	1 Hacc		Cubotrat		VILOCOO	utilisé d'eau (cm		intensité)		0:0%
1	Α	S1	bryophytes	N5	moyenne	Surber	3	-	-	1:1-20%
2	Α	S28	racines-branchages	N3	lente	Surber	7	-	-	2 : 21-40% 3 : 41-60%
3	Α	S30	blocs	N3	lente	Surber	6	-	-	4 : 61-80% 5 : 81-100%
4	Α	S9	graviers	N3	lente	Surber	15	-	-	
5	В	S24	pierres	N5	moyenne	Surber	3	-	-	
6	В	S25	sables-limons	N3	lente	Surber	5	-	-	
7	В	S24	pierres	N3	lente	Surber	3	-	-	
8	В	S24	pierres	N1	nulle	Surber	6	-	-	
9	С	S24	pierres	N5	moyenne	Surber	5	-	-	
10	С	S24	pierres	N3	lente	Surber	5	-	-	
11	С	S24	pierres	N1	nulle	Surber	3	-	-	
12	С	S25	sables-limons	N1	nulle	Surber	5	-	-	

→ LISTE FAUNISTIQUE LE RONZEAU A AIGUEPERSE LSE2206-7698

 $N^{\circ}enregistrement: LSE2206-7698 \qquad \quad Cours~d'eau:~Ronzeau$

Liste faunistique :	Date d'échantillonnage: 14/06/2022							
TAXONS	code	GI	Genre	A	B	C	Effectif	Abondance
	sandre						total	relative
PLECOPTERES								
Leuctridae	33830	7	Leuctra geniculata	3	30	12		
Leuctridae	69	7	Leuctra		13			
Leuctridae	66	7		36	104	50	248	9,86%
Nemouridae	26	6	Nemoura	6	1	1		
Nemouridae	46	6	Protonemura	5	2			
Nemouridae	20	6					15	0,60%
Perlidae	164	9	Perla			1		
Perlidae	155	9					1	0,04%
TRICHOPTERES								
Hydropsychidae	212	3	Hydropsyche	3	7	1		
Hydropsychidae	211	3					11	0,44%
Leptoceridae	320	4	Adicella	4				
Leptoceridae	311	4	Athripsodes	1	2	9		
Leptoceridae	313	4	Ceraclea	1				
Leptoceridae	312	4	Mystacides			1		
Leptoceridae	310	4	·				18	0,72%
Limnephilidae	3163	3	SF Limnephilinae			1		,
Limnephilidae	276	3	•				1	0,04%
Rhyacophilidae	183	4	Rhyacophila lato sensu	8	15	2	25	0,99%
Sericostomatidae	322	6	Sericostoma			1		,
Sericostomatidae	321	6					1	0,04%
EPHEMEROPTERES								
Baetidae	364	2	Baetis	41	163	113		
Baetidae	363	2					317	12,60%
Caenidae	457	2	Caenis			1		
Caenidae	456	2					1	0,04%
Ephemerellidae	450	3	Ephemerella	35	68	45		
Ephemerellidae	449	3	-				148	5,88%
Ephemeridae	502	6	Ephemera	5	35	12	52	2,07%
Heptageniidae	404	5	Rhithrogena		5	1		
Heptageniidae	399	5					6	0,24%
Leptophlebiidae	491	7	Habrophlebia	6	1	3		
Leptophlebiidae	473	7		45	7	23	85	3,38%
COLEOPTERES								
Dytiscidae	2393		SF Hydroporinae	1				
Dytiscidae	527						1	0,04%
Elmidae	620	2	Dupophilus	3	148	83		
Elmidae	618	2	Elmis	63	13	3		
Elmidae	619	2	Esolus	1		2		
Elmidae	623	2	Limnius	4	50	12		
Elmidae	622	2	Oulimnius	24	14	2		
Elmidae	614	2					422	16,77%
Hydraenidae	608		Hydraena	5	19	8		
Hydraenidae	599		Limnebius	1				
Hydraenidae	607						33	1,31%
Hydrophilidae	2517		SF Hydrophilinae		1			
Hydrophilidae	571						1	0,04%

CARSO-LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

DIDTEDEC								
DIPTERES Anthomyiidae	847			8			8	0,32%
Athericidae	838			1		1	2	0,32 %
Ceratopogonidae	819			1	1	4	5	0,20%
Chironomidae	807	1		220	218	115	5 553	21,98%
Dixidae	793	1		220	1	2	3	0,12%
Empididae	831			3	1	2	4	0,12%
Limoniidae	757			3 1	8	8	4 17	0,16%
Psychodidae	783			2	O	1	3	0,03 %
Simuliidae	801			24	14	4	42	1,67%
Tabanidae	837			24	14	4	1	0,04%
Tipulidae	753			2	1		2	0,04 %
ODONATES	733			2				0,08%
ANISOPTERES	9787						•	
	687		Condulacastan		2		2	0,08%
Condulegasteridae	682		Cordulegaster	1	1		2	0,08%
Gomphidae	678		Onychogomphus	I	I		2	0.000
Gomphidae							2	0,08%
ZYGOPTERES	9785 650		Calantan	10			10	0,40%
Calopterygidae CRUSTACES	650		Calopteryx	10				0,40%
5 5 5 5 5	2114						•	
AMPHIPODES Gammaridae	3114 892	2	C	31	21	3	•	
	892 887	2 2	Gammarus	31	21	3		2.100
Gammaridae	887	2					55	2,19%
DECAPODES	972		D = -! C= -4 =	2		1	•	
Astacidae	872		Pacifastacus	2		1	•	0.120
Astacidae	864						3	0,12%
AUTRES CRUSTACES	2206			D			•	
Copépodes (présence)	3206			P	D.	ъ	p	p
Ostracodes (présence)	3170				P	P	p	p
MOLLUSQUES	2460	2					•	
BIVALVES	3468		D: : #:	2	2.0	2.5	•	
Sphaeriidae	1043		Pisidium	2	28	25	104	4.10.67
Sphaeriidae	1042				23	26	104	4,13%
GASTEROPODES	1020				26	20		2.05.6
Ancylidae	1028		Ancylus	6	26	20	52	2,07%
VERS ET AUTRES TAXONS	022	1		10	100	70	100	7.47.6
OLIGOCHETES	933	1		18	100	70	188	7,47%
NEMATHELMINTHES	3111		77. 1	(0)	2	5	7	0,28%
HYDRACARIENS	906		Hydracarina	60	6	1 D	67	2,66%
BRYOZOAIRES	1087		Bryozoa	P		P (7.2)	p	p
Effectifs:				692	1151	673	2516	1,00
Nombre de taxons				40	37	40		

Taxon surligné : non pris en compte dans le calcul de l'indice

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

→ INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLOGIQUES – LE RONZEAU A ÂIGUEPERSE (04410053) I₂M₂ et état biologique IBG-DCE Nombre de taxons :

I₂M₂ et état biologique				
I_2M_2	0,745			
Etat biologique(Arrêté du 27/07/18)	Très bon			
Nb taxons contributifs	53			
Métriques en EQR				
Indice de Shannon	0,799			
ASPT	0,862			
Polyvoltinisme	0,696			
Ovoviviparité	0,709			
Richesse taxonomique	0,643			

IBG-DCE								
Nombre de taxons :	36							
Classe de variété (/14) :	10							
Groupe Faunistique Indicateur (/9) :	7							
Taxon Indicateur :	Leuctridae							
Equivalent I.B.G.N. / 20 :	16							
Taille du cours d'eau /HER /EQR	TP3							
Etat biologique (Arrêté du 27/07/2015)	Bon							
Robustesse (/20):	16							
Taxon indicateur robustesse	Leptophlebiidae							

OUTIL DIAGNOSTIQUE: probabilités des pressions potentielles Dégradation de l'habitat Qualité de l'eau Ripisylve Matière Organique 0.0 Voies de Anthropisation Matières du BV communication Pesticides Phosphorées 0.4 Instabilité hydrologique Matières HAP Azotées Risque de colmatage Nitrates

M. Mourot
- Hydrobiologiste-

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 24/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7692

Nom du client : SYMISOA

Ruisseau de Sornin à Aigueperse

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ec	hantillonnage	Analyse		
Date et heure :	13/06/2022 de 11h40 à 13h20	Date :	20 et 21/03/2023	
Organisme et Opérateur terrain :		Organisme et Opérateur labo :	P. Weber / CARSO	

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le Sornin à Aigueperse (04410017).

→ RESULTATS DE L'ANALYSE

• I₂M₂:

Station	Sornin à Aigueperse
I_2M_2	0,753
Etat biologique*	Très bon

^{*} suivant l'arrêté du 27 juillet 2018

• IBG-DCE:

	Sornin à Aigueperse			
Nombre de taxons :	39			
Classe de variété (/14) :				
Groupe Faunistique Indicateur (/9) :): 8			
Taxon Indicateur :	Brachycentridae			
Equivalent-IBGN /20 :	18			
Taille du cours d'eau /HER /EQR	TP3 0,94444			
Etat biologique *	Très bon			

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

		Ru Sornin à Aiguepers LSE2206-7692				
Commune:	Aigueperse	Coordonnées (Lambert 93)	Amont	Aval		
Département :	Rhône (69)	X	809012	808980		
Hydro- écorégion :	HER 3 : Massif central Sud	Y	6575639	6575687		

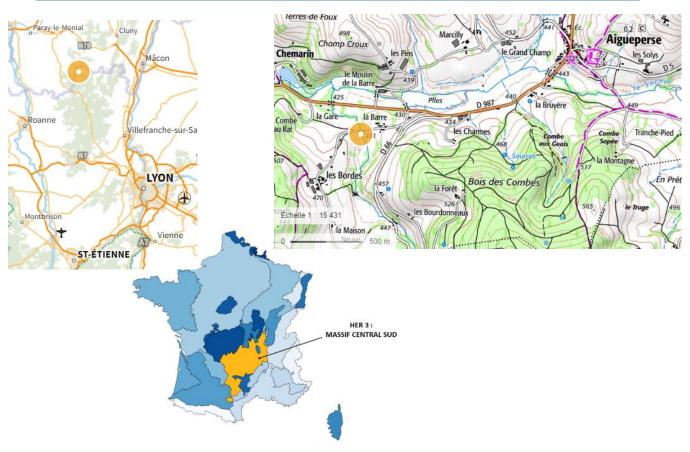


Figure 1 : Localisation de la station d'échantillonnage

- Photos de la station :

Amont de la station

Aval de la station

→ DESCRIPTION DE LA STATION RUISSEAU DE SORNIN A AIGUEPERSE LSE2206-7692

- Conditions environnementales

Accessibilité: -

Météo : temps sec ensoleillé Ensoleillement : Moyen Teinte de l'eau : incolore

Hydrologie: Basses eaux Visibilité du fond: Bonne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite
Lit majeur		Prairie	Prairie
Porgos	nature	Naturelle	Naturelle
Berges	pente	Pente moyenne	Pente moyenne
Diniovlyo	état	Dense, Clairsemée	Dense, Clairsemée
Ripisylve	type	Herbacée, Arborescente	Herbacée, Arborescente

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficulténon

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...):

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonico	les (°C)	19,3	Très bon
eaux cyprinico	les (°C)	19,3	Très bon
Oxygène dissous	(mg O2/L)	9,15	Très bon
Saturation en O2 diss	ous (%)	103,2	Très bon
Conductivité	(μS/cm)	119	*
рН	(unité de pH)	7,77	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 2,4 m Largeur plein bord Lpb:3,1 m

Longueur de la station: 53 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 20% Plat lentique, 50% Plat courant, 30% Radier,

→ GRILLE D'ECHANTILLONNAGE RUISSEAU DE SORNIN A AIGUEPERSE LSE2206-7692

Recouvrement des substrats				Classes de vitesse Rapide Moyenne Lente Nulle							
	(surface relative sur la station)					Moyenne 25 ≤ V < 75 cm/s		Lente		Nulle	
en fonction des cla	en fonction des classes de vitesse					25 ≤	v < 75 cm/s N5	5≤	V < 25 cm/s N3	V < 5 cm/s N1	
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev
Bryophytes	S1	1	М			+	A1				
Spermaphytes immergés (hydrophytes)	S2										
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3										
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	1	М					+	A2		
Sédiments minéraux de grande taille, pierres-galets (25 à 250 mm)	S24	62	D			+++	B5 C11	++	C9	+	C10
Blocs facilement déplaçables (>250 mm)	S30	3	М					++	A3	+	
Graviers (2,5 à 25 mm)	S9	5	D					++	B6	+	
Spermaphytes émergents (hélophytes)	S10	1	М					++	A4	+	
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11	2	М							+	
Sables (< 2 mm) - Limons	S25	5	D					++	В7	+	
Algues - bactéries et champignons filamenteux	S18										
Surfaces uniformes dures naturelles ou artificielles	S29	20	D			++		+++	В8	+	

Total 100 %

- Description des prélèvements élémentaires

N°	Phase		Substrat	,	vitesse	Matériel utilisé	Hauteur d'eau (cm)	Colma (natu	re /	codes Intensit 0:0%
1	Α	S1	bryophytes	N5	moyenne	Surber	5	-	-	1 : 1-20° 2 : 21-40
2	Α	S28	racines-branchages	N3	lente	Surber	20	-	-	3 : 41-60
3	Α	S30	blocs	N3	lente	Surber	30	-	-	4 : 61-80 5 : 81-100
4	Α	S10	hélophytes	N3	lente	Surber	10	-	-	
5	В	S24	pierres	N5	moyenne	Surber	6	-	-	
6	В	S9	graviers	N3	lente	Surber	7	-	-	
7	В	S25	sables-limons	N3	lente	Surber	10	-	-	
8	В	S29	surfaces uniformes	N3	lente	Surber	20	-	-	
9	С	S24	pierres	N3	lente	Surber	10	-	-	
10	С	S24	pierres	N1	nulle	Surber	2	-	-	
11	С	S24	pierres	N5	moyenne	Surber	7	-	-	
12	С	S24	pierres	N5	moyenne	Surber	15	-	-	

→ LISTE FAUNISTIQUE RUISSEAU DE SORNIN A AIGUEPERSE LSE2206-7692

N°enregistrement : LSE2206-7692 Cours d'eau : Somin

Liste faunistique :	Date d'échanti	illonnage :	14/06/2022					
TAXONS	code	GI	Genre	A	В	С	Effectif	Abondance
	sandre						total	relative
PLECOPTERES								
Chloroperlidae	180	9	Isoptena			1		
Chloroperlidae	169	9					1	0,04%
Leuctridae	33830	7	Leuctra geniculata	7	13	83		
Leuctridae	69	7	Leuctra		1			
Leuctridae	66	7		3			107	3,78%
Nemouridae	26	6	Nemoura	1				
Nemouridae	20	6					1	0,04%
Perlidae	164	9	Perla			2		
Perlidae	155	9					2	0,07%
TRICHOPTERES								
Brachycentridae	268	8	Micrasema	45	2			
Brachycentridae	262	8					47	1,66%
Glossosomatidae	190	7	Glossosoma	1	5	5		
Glossosomatidae	9812	7	SF Agapetinae			1		
Glossosomatidae	189	7		34	5	52	103	3,64%
Goeridae	292	7	Silo	6	1	35		
Goeridae	286	7		16	8	48	114	4,03%
Hydropsychidae	212	3	Hydropsyche	23	8	21		
Hydropsychidae	211	3					52	1,84%
Lepidostomatidae	305	6	Lepidostoma	3				
Lepidostomatidae	304	6		[3	0,11%
Leptoceridae	311	4	Athripsodes	2	6	3		
Leptoceridae	313	4	Ceraclea	1	1			
Leptoceridae	312	4	Mystacides	1				
Leptoceridae	310	4					14	0,49%
Limnephilidae	3163	3	SF Limnephilinae	1		17		
Limnephilidae	276	3					18	0,64%
Polycentropodidae	223	4				2	2	0,07%
Psychomyiidae	239	4	Psychomyia	1				
Psychomyiidae	238	4					1	0,04%
Rhyacophilidae	183	4	Rhyacophila lato sensu	4	2	25	31	1,10%
Sericostomatidae	322	6	Sericostoma	6	3	3		
Sericostomatidae	321	6					12	0,42%
EPHEMEROPTERES							•	
Baetidae	364	2	Baetis	54	25	130	•00	- 20 m
Baetidae	363	2		2		2.5	209	7,38%
Ephemerellidae	450	3	Ephemerella	26	3	35	- 4	
Ephemerellidae	449	3	F 1		,		64	2,26%
Ephemeridae	502	6	Ephemera		1		1	0,04%
Heptageniidae	421	5	Ecdyonurus			6		
Heptageniidae	3181	5	Electrogena		,	1		
Heptageniidae	404	5	Rhithrogena		1	8	17	0.556
Heptageniidae	399	5			,		16	0,57%
Leptophlebiidae	473	7		2	1	1	4	0,14%
HETEROPTERES Corixidae	719		Micropasta		6		•	
Corixidae	719		Micronecta		6		6	0,21%
Hydrometridae	740		Hydrometra	1			1	0,21%
COLEOPTERES	/+0		туитотени	1				0,04 /6
Elmidae	620	2	Dupophilus		57	162	•	
Elmidae	618	2	Elmis	187	4	35		
Elmidae	619	2	Esolus	3	7	40		
Elmidae	623	2	Limnius		3	6		
Elmidae	622	2	Oulimnius	19	6	52		
Emidae	614	2	J. 100 100 100 100 100 100 100 100 100 10	**			581	20,52%
Hydraenidae	608	1 -	Hydraena	17		9		/0
Hydraenidae	609		Ochthebius	1		,		
Hydraenidae	607						27	0,95%
Hydrophilidae	2517		SF Hydrophilinae	1				.,
Hydrophilidae	571		y				1	0,04%
DIPTERES								
Blephariceridae	747					1	1	0,04%
Ceratopogonidae	819			[1	1	0,04%
Chironomidae	807	1		332	153	343	828	29,25%
Dixidae	793			2			2	0,07%
Empididae	831					3	3	0,11%
Emprarae	001					Ī	ı	
Ephydridae Ephydridae	844			2			2	0,07%
-				2	6	7	2 13	0,07 % 0,46 %
Ephydridae	844			2 128	6	7 1		

CARSO-LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

ODONATES								
ANISOPTERES	9787							
Aeshnidae	670		Boyeria	1				
Aeshnidae	669						1	0,04%
Gomphidae	682		Onychogomphus		2	3		
Gomphidae	678						5	0,18%
Agriotypidae	5114					1	1	0,04%
CRUSTACES								
AMPHIPODES	3114							
Gammaridae	892	2	Gammarus	8	1	2		
Gammaridae	887	2					11	0,39%
AUTRES CRUSTACES								
Copépodes (présence)	3206			P			р	р
Ostracodes (présence)	3170			P		P	р	р
MOLLUSQUES		2						
BIVALVES	3468							
Sphaeriidae	1043		Pisidium	1	9	1		
Sphaeriidae	1042			2	2		15	0,53%
GASTEROPODES								
Ancylidae	1028		Ancylus	14	5	23	42	1,48%
Hydrobiidae	978		Potamopyrgus	13	105	13		
Hydrobiidae	973						131	4,63%
Lymnaeidae	1004		Radix			1		
Lymnaeidae	998						1	0,04%
VERS ET AUTRES TAXONS								
ACHETES		1						
Erpobdellidae	928			2		2	4	0,14%
Glossiphoniidae	908			1			1	0,04%
OLIGOCHETES	933	1		43	29	54	126	4,45%
NEMATHELMINTHES	3111				1		1	0,04%
HYDRACARIENS	906		Hydracarina	36	10	48	94	3,32%
BRYOZOAIRES	1087		Bryozoa	P		P	р	р
Effectifs :				1051	492	1288	2831	1,00

Taxon surligné : non pris en compte dans le calcul de l'indice

Nombre de taxons

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

45

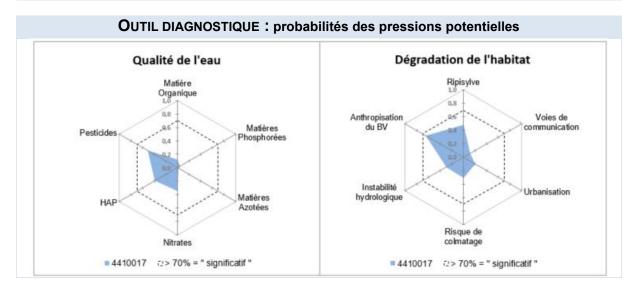
→ INTERPRETATIONS (HORS ACCREDITATION)

ASPT

Métriques en EQR Indice de Shannon

Richesse taxonomique

Polyvoltinisme


Ovoviviparité

INDICES BIOLOGIQUES – LE SORNIN A AIGUEPERSE (04410017								
l₂M₂ et état biologiqu	IBG-DCE							
I_2M_2	0,753		Nombre de taxons :					
Etat biologique(Arrêté du 27/07/18)	Très bon		Classe de variété (/14) :					
			Groupe Faunistique Indicateur (/9) :					
Nb taxons contributifs	63		Tayon Indiantayy	Droo				

0,753
rès bon
63
0,729
0,804
0,694
0,725

0.833

IBG-DCE			
Nombre de taxons :	39		
Classe de variété (/14) :	11		
Groupe Faunistique Indicateur (/9) :	8		
Taxon Indicateur :	Brachycentridae		
Equivalent I.B.G.N. / 20 :	18		
Taille du cours d'eau /HER /EQR	TP3		
Etat biologique (Arrêté du 27/07/2015)	Très bon		
Robustesse (/20):	17		
Taxon indicateur robustesse	Leuctridae		

M. Mourot - Hydrobiologiste-

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 24/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7691

Nom du client : SYMISOA

Le Sornin à Saint-Igny-de-vers 2

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ec	hantillonnage	Analyse			
Date et heure :	16/06/2022 de 13h30 à 15h20	Date :	17 au 20/03/2023		
Organisme et Opérateur terrain :		Organisme et Opérateur labo :	P. Weber / CARSO		

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le Sornin à Saint-Igny-de-Vers (04410015).

→ RESULTATS DE L'ANALYSE

I₂M₂:

Station	Sornin à St Igny-de-Vers
I_2M_2	0,712
Etat biologique*	Très bon

^{*} suivant l'arrêté du 27 juillet 2018

• IBG-DCE:

	Sornin à St Igny-de-Vers			
Nombre de taxons :	39			
Classe de variété (/14) :	11			
Groupe Faunistique Indicateur (/9) :	7			
Taxon Indicateur :	Leuctridae			
Equivalent-IBGN /20 :	17			
Taille du cours d'eau /HER /EQR	TP3	0,88889		
Etat biologique *	Bon			

^{*} suivant l'arrêté du 27 juillet 2015

CARSO-LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

→ LOCALISATION GEOGRAPHIQUE

			Sornin à St-Ig LSE2206	
Commune:	Saint-Igny-de-Vers	Coordonnées (Lambert 93)	Amont	Aval
Département :	Rhône (69)	X	807799	807726
Hydro- écorégion :	HER 3 : Massif central Sud	Y	6574258	6574781

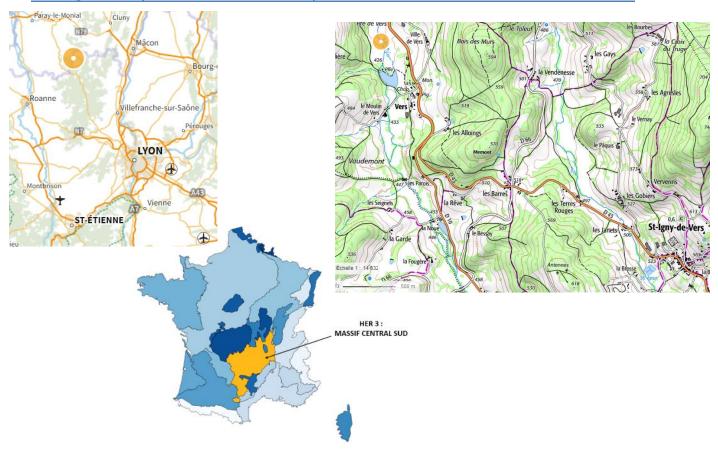


Figure 1 : Localisation de la station d'échantillonnage

- Photos de la station :

Amont de la station

Aval de la station

→ DESCRIPTION DE LA STATION LE SORNIN A SAINT-IGNY-DE-VERS LSE2206-7691

- Conditions environnementales

Accessibilité: -

Météo : temps sec ensoleillé Ensoleillement : Faible Teinte de l'eau : marron clair

Hydrologie : Basses eaux Visibilité du fond : Faible

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite		
Lit majeur		Prairie	Prairie		
Porgos	nature	Naturelle	Naturelle		
Berges -	pente	Pente moyenne	Pente moyenne		
Dinjoylya	état	Clairsemée	Dense, Clairsemée		
Ripisylve	type	Herbacée, Arbustive, Arborescente	Herbacée, Arbustive, Arborescente		

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficultenon

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...) : 1 Ephemera en phase 1

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonicole	es (°C)	21,7	Moyen
eaux cyprinicole	es (°C)	21,7	Très bon
Oxygène dissous	(mg O2/L)	8,24	Très bon
Saturation en O2 disso	us (%)	97,5	Très bon
Conductivité	(μS/cm)	109,4	*
рН	(unité de pH)	7,44	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 3,4 m Largeur plein bord Lpb: 4,9 m

Longueur de la station : 65 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 20% Plat lentique, 50% Plat courant, 30% Radier,

CARSO-LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

→ GRILLE D'ECHANTILLONNAGE LE SORNIN A SAINT-IGNY-DE-VERS LSE2206-7691

Recouvrement des substrats					Classes de vitesse							
(surface relative sur la station)				Rapide		Moyenne		Lente		Nulle		
en fonction des classes de vitesse					V ≥ 75 cm/s N6		25 ≤ V < 75 cm/s N5		5 ≤ V < 25 cm/s N3		V < 5 cm/s N1	
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	
Bryophytes	S1	1	М					+	A1			
Spermaphytes immergés (hydrophytes)	S2											
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3											
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	2	М					++	A2	+		
Sédiments minéraux de grande taille, pierresgalets (25 à 250 mm)	S24	72	D			+++	B5 C10 C12	++	B8 C11	+	C9	
Blocs facilement déplaçables (>250 mm)	S30	1	М					+	A3			
Graviers (2,5 à 25 mm)	S9	4	М					+	A4			
Spermaphytes émergents (hélophytes)	S10		Р					+				
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11											
Sables (< 2 mm) - Limons	S25	10	D					++	В6	+		
Algues - bactéries et champignons filamenteux	S18											
Surfaces uniformes dures naturelles ou artificielles	S29	10	D			+		++	В7			

Total 100 %

- Description des prélèvements élémentaires

N°	Phase	Substrat			vitesse	Matériel utilisé	Hauteur d'eau (cm)	Colmata (nature	e /	codes : Intensité 0 : 0%
1	Α	S1	bryophytes	N3	lente	Surber	10	-	-	1 : 1-20% 2 : 21-40%
2	Α	S28	racines-branchages	N3	lente	Surber	20	-	-	3:41-60%
3	Α	S30	blocs	N3	lente	Surber	20	-	-	4 : 61-80% 5 : 81-100%
4	Α	S9	graviers	N3	lente	Surber	15	-	-	
5	В	S24	pierres	N5	moyenne	Surber	12	-	-	
6	В	S25	sables-limons	N3	lente	Surber	10	-	-	
7	В	S29	surfaces uniformes	N3	lente	Surber	15	-	-	
8	В	S24	pierres	N3	lente	Surber	30	-	-	
9	С	S24	pierres	N1	nulle	Surber	4	-	-	
10	С	S24	pierres	N5	moyenne	Surber	8	-	-	
11	С	S24	pierres	N3	lente	Surber	12	-	-	
12	С	S24	pierres	N5	moyenne	Surber	4	-	-	

LISTE FAUNISTIQUE LE SORNIN A SAINT-IGNY-DE-VERS LSE2206-7691

 $N^o en registrement: LSE 2206-7691$ Cours d'eau : Sornin

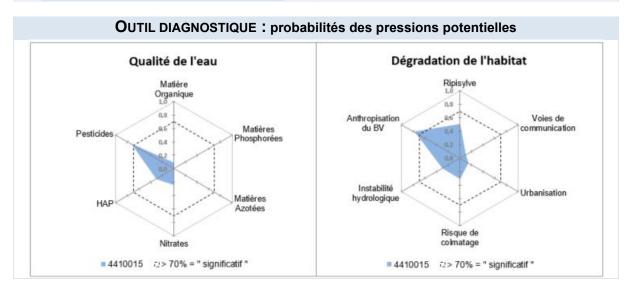
Liste faunistique Date d'échantillonnage : 14/06/2022 GIA В Effectif Abondance Genre sandre relative **PLECOPTERES** Leuctridae 33830 Leuctra geniculata 7 9 69 Leuctridae 69 Leuctra 6,97% Leuctridae 66 7 183 Nemouridae 26 6 Nemoura Nemouridae 20 0.11% 6 3 TRICHOPTERES Brachycentridae 268 8 Micrasema 8 1 Brachycentridae 262 8 9 0,34% Glossosomatidae 9812 7 SF Agapetinae 1 7 7 0.27% Glossosomatidae 189 5 Goeridae 286 7 3 0,11% 3 Hydropsychidae 212 Hydropsyche 70 20 84 Hydrops ychidae 211 3 174 6,63% Hydroptilidae 200 5 Hydroptila Hydroptilidae 198 5 Ithytrichia Hydroptilidae 193 5 3 0,11% 2 Leptoceridae 311 4 Athripsodes 4 Leptoceridae 312 Mystacides 1 4 Leptoceridae 310 4 0,15% 231 4 Polycentropodidae Polycentropus Polycentropodidae 0.27% 223 4 7 Psychomyiidae 239 4 Psychomyia 9 9 Psychomyiidae 238 4 18 0,69% Rhyacophilidae .5 183 4 Rhyacophila lato sensu 4 12 0.46% **EPHEMEROPTERES** Baetidae 364 2 Baetis 41 132 110 Baetidae 390 2 Procloeon 2 Baetidae 363 2 285 10,86% Ephemerellidae 450 3 Ephemerella 89 10 39 Ephemerellidae 449 3 138 5,26% Ephemeridae 502 6 Ephemera 6 10 0.38% 421 5 Heptageniidae Ecdyonurus 5 5 Rhithrogena 404 18 Heptageniidae 2 Heptageniidae 399 5 1 43 1,64% 7 Habrophlebia Leptophlebiidae 491 2 Leptophlebiidae 473 7 23 12 3 40 1.52% Oligoneuriidae 394 Oligoneuriella 0,04% **COLEOPTERES** 620 2 Dupophilus 6 109 2 Elmidae 618 Elmis 1 6 Elmidae 619 2 Esolus 18 117 623 2 Elmidae Limnius 2 Elmidae 622 2 Oulimnius Elmidae 614 266 10,14% Gyrinidae 513 Aulonogyrus Gyrinidae 0,04% 512 1 Hydraenidae 608 12 Hydraena Hydraenidae 599 Limnebius Hydraenidae 607 17 0.65% **DIPTERES** 0,08% Athericidae 838 1 2 0.08% Ceratopogonidae 819 2 Chironomidae 807 1 330 250 146 726 27,67% 757 3.24% Limoniidae 27 15 43 85 Psychodidae 783 1 3 0,11% Simuliidae 801 10 6 0,61% 16 0,19% Tipulidae 753 5 5 **ODONATES** ANISOPTERES 9787 Gomphidae 679 Gomphus 682 Gomphidae Onychogomphus2 6 Gomphidae 678 9 0,34% ZYGOPTERES 9785 Calopterygidae 650 Calopteryx 4 0.15% 0,04% Platycnemididae 657 Platycnemis 1 MEGALOPTERES Sialidae Sialis 0,19%

CARSO-LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

CRUSTACES								
AMPHIPODES	3114							
Gammaridae	892	2	Gammarus	39	2	26		
Gammaridae	887	2					67	2,55%
DECAPODES								
Astacidae	872		Pacifastacus	4	1			
Astacidae	864						5	0,19%
AUTRES CRUSTACES								
Copépodes (présence)	3206			P		P	р	р
MOLLUS QUES		2						
BIVALVES	3468							
Sphaeriidae	1043		Pisidium	3	3	1		
Sphaeriidae	1042				10	1	18	0,69%
GASTEROPODES								
Ancylidae	1028		Ancylus	3	10	9	22	0,84%
VERS ET AUTRES TAXONS								
ACHETES		1						
Branchiobdellidae	3132			1			1	0,04%
OLIGOCHETES	933	1		132	176	74	382	14,56%
NEMATHELMINTHES	3111			2	4	16	22	0,84%
HYDRACARIENS	906		Hydracarina	5	8	12	25	0,95%
BRYOZOAIRES	1087		Bryozoa	P			р	р
Effectifs :				851	759	1014	2624	1,00

Taxon surligné : non pris en compte dans le calcul de l'indice Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur


36

→ INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLOGIQUES - LE SORNIN A SAINT-IGNY-DE-VERS (04410015)

l₂M₂ et état biologique	
I_2M_2	0,712
Etat biologique(Arrêté du 27/07/18)	Très bon
Nb taxons contributifs	56
Métriques en EQR	
Indice de Shannon	0,581
ASPT	0,876
Polyvoltinisme	0,638
Ovoviviparité	0,758
Richesse taxonomique	0,667

IBG-DCE	
Nombre de taxons :	39
Classe de variété (/14) :	11
Groupe Faunistique Indicateur (/9) :	7
Taxon Indicateur :	Leuctridae
Equivalent I.B.G.N. / 20 :	17
Taille du cours d'eau /HER /EQR	TP3
Etat biologique (Arrêté du 27/07/2015)	Bon
Robustesse (/20):	17
Taxon indicateur robustesse	Glossosomatidae

M. Mourot
- Hydrobiologiste-

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 25/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7699

Nom du client : SYMISOA

Le Sornin à La Chapelle sous Dun

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ec	hantillonnage	Analyse		
Date et heure :	13/06/2022 de 10h00 à 11h20	Date :	Du 14 au 15/03/2023	
Organisme et Opérateur terrain :		Organisme et Opérateur labo :	P. Weber / CARSO	

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le Sornin à La Chapelle-sous-Dun (04410047).

→ RESULTATS DE L'ANALYSE

• <u>l₂M₂</u>:

Station	le Sornin à La Chapelle- sous-Dun
I ₂ M ₂	0,681
Etat biologique*	Très bon

^{*} suivant l'arrêté du 27 juillet 2018

• <u>IBG-DCE</u>:

	Le Sornin à La C	hapelle-
	sous-Dur	ı
Nombre de taxons :	39	
Classe de variété (/14) :	11	
Groupe Faunistique Indicateur (/9) :	8	
Taxon Indicateur :	Brachycentri	idae
Equivalent-IBGN /20 :	18	
Taille du cours d'eau /HER /EQR	TP21	0,94444
Etat biologique *	Très bor	1

^{*} suivant l'arrêté du 27 juillet 2015

CARSO—LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

→ LOCALISATION GEOGRAPHIQUE

		Sornin à La Chapelle-sous-E LSE2206-7699				
Commune:	La Chapelle-sous-Dun		Amont	Aval		
Département :	Saône et Loire (71)	Х	800404	800322		
Hydro- écorégion :	HER 21 : Massif central Nord	Y	6576204	6576181		

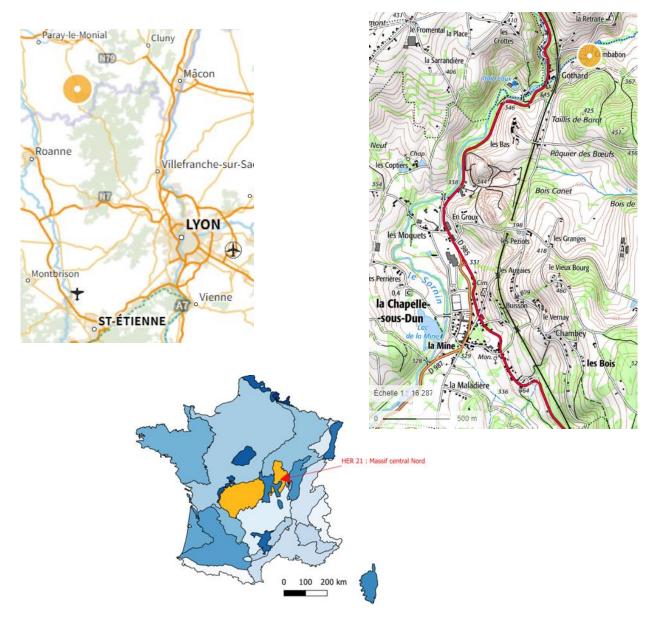


Figure 1 : Localisation de la station d'échantillonnage

→ DESCRIPTION DE LA STATION LE SORNIN A LA CHAPELLE-SOUS-DUN LSE2206-7699

- Conditions environnementales

Accessibilité: -

Météo : temps sec ensoleillé Ensoleillement : Faible Teinte de l'eau : marron clair

Hydrologie: Basses eaux Visibilité du fond: Moyenne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite	
Lit majeur		Prairie	Prairie	
Porgos	nature	Naturelle	Naturelle	
Berges —	pente	Pente moyenne	Pente moyenne	
Pinicylyo	état	Dense, Clairsemée	Dense, Clairsemée	
Ripisylve	type	Herbacée, Arbustive, Arborescente	Herbacée, Arbustive, Arborescente	

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficultenon

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...) : 2 calopteryx relâchés en phase A

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonicoles	(°C)	18	Très bon
eaux cyprinicoles	(°C)	18	Très bon
Oxygène dissous	(mg O2/L)	8,97	Très bon
Saturation en O2 dissous	(%)	97,3	Très bon
Conductivité	(μS/cm)	127,6	*
pH (unité de pH)	7,604	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 5 m Largeur plein bord Lpb:9 m

Longueur de la station : 108 m, correspondant à 2 séquences radiers /mouilles

Faciès d'écoulement :5% Chenal lotique, 30% Plat lentique, 20% Plat courant, 45% Radier,

→ GRILLE D'ECHANTILLONNAGE LE SORNIN A LA CHAPELLE-SOUS-DUN LSE2206-7699

Recouvrement of	Recouvrement des substrats						<u>Classes de vitesse</u>								
(surface relative	(surface relative sur la station) en fonction des classes de vitesse						Moyenne 25 ≤ V < 75 cm/s N5		Lente 5 ≤ V < 25 cm/s N3		Nulle V < 5 cm/s N1				
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev				
Bryophytes	S1	1	М					+	A1						
Spermaphytes immergés (hydrophytes)	S2														
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3														
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	3	М					++	A2	+					
Sédiments minéraux de grande taille, pierres-galets (25 à 250 mm)	S24	40	D	+	C12	+++	C9	++++	B5	++	C10				
Blocs facilement déplaçables (>250 mm)	S30	14	D			+		++	В6						
Graviers (2,5 à 25 mm)	S9	4	М			+	A4	++	A3						
Spermaphytes émergents (hélophytes)	S10														
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11														
Sables (< 2 mm) - Limons	S25	30	D					++	В7	+	C11				
Algues - bactéries et champignons filamenteux	S18														
Surfaces uniformes dures naturelles ou artificielles	S29	8	D	++		+		+++	В8						

Total 100 %

- Description des prélèvements élémentaires

N°	Phase	Substrat		,	vitesse	Matériel utilisé	Hauteur d'eau (cm)	Colmata (nature	1
1	Α	S1	bryophytes	N3	lente	Surber	6	minéral	1
2	Α	S28	racines-branchages	N3	lente	Surber	18	minéral	1
3	Α	S9	graviers	N3	lente	Surber	4	minéral	1
4	Α	S9	graviers	N5	moyenne	Surber	16	minéral	1
5	В	S24	pierres	N3	lente	Surber	5	minéral	1
6	В	S30	blocs	N3	lente	Surber	17	minéral	1
7	В	S25	sables-limons	N3	lente	Surber	20	minéral	1
8	В	S29	surfaces uniformes	N3	lente	Surber	8	minéral	1
9	С	S24	pierres	N5	moyenne	Surber	15	minéral	1
10	С	S24	pierres	N1	nulle	Surber	6	minéral	1
11	С	S25	sables-limons	N1	nulle	Surber	12	minéral	1
12	С	S24	pierres	N6	rapide	Surber	17	minéral	1

→ LISTE FAUNISTIQUE LE SORNIN A LA CHAPELLE-SOUS-DUN LSE2206-7699

N°enregistrement: LSE2206-7699 Cours d'eau : Sornin

Data diśahantillannasa . 12/06/2022

TAXONS	18 5 345 3 4 1 18 47 4	87 94 29 2 53 5 4 3	32 1 13 12 1	### Effectif total	16,07% 1,95% 9,20% 0,34% 0,13% 0,11%
PLECOPTERES	228 18 5 345 3 11 11 11 11 11 11 11 11 11 11 11 11 1	94 29 2 53 5 4 3	32 1 13 12 1	. 718 . 87 411 15 6 5	1,95% 9,20% 0,34% 0,13%
Leuctridae	228 18 5 345 3 11 11 11 11 11 11 11 11 11 11 11 11 1	94 29 2 53 5 4 3	32 1 13 12 1	87 411 15 6	1,95% 9,20% 0,34% 0,13%
Leuctridae 69 7 Leuctra TRICHOPTERES Brachycentridae 265 8 Brachycentrus Brachycentridae 268 8 Micrasema Brachycentridae 262 8 Hydropsychidae 211 3 Hydropsychidae 211 3 Leptoceridae 310 4 Limnephilidae 3163 3 SF Limnephilinae Limnephilidae 276 3 Polycentropodidae 231 4 Polycentropus Polycentropodidae 223 4 Rhyacophila lato sens EPHEMEROPTERES 8 Baetidae 364 2 Baetis Baetidae 364 2 Baetis Baetis Baetidae 363 2 Procloeon Baetidae 2 Brachycercus Caenidae Caenidae 468 2 Brachycercus Caenidae Caenidae 456 2 Ephemerella Ephemerellidae 450 <	228 18 5 345 3 11 11 11 11 11 11 11 11 11 11 11 11 1	94 29 2 53 5 4 3	32 1 13 12 1	87 411 15 6	1,95% 9,20% 0,34% 0,13%
Description	18 5 345 3 1 1 18	29 2 53 5 4 3	32 1 13 12 1	87 411 15 6	1,95% 9,20% 0,34% 0,13%
TRICHOPTERES Brachycentridae 265 8 Brachycentrus Brachycentridae 268 8 Micrasema Brachycentridae 262 8 Hydropsychidae 211 3 Hydropsyche 211 3 Leptoceridae 312 4 Mystacides Leptoceridae 310 4 Limephilidae Limnephilidae 3163 3 SF Limnephilinae Limnephilidae 276 3 Polycentropus Polycentropodidae 223 4 Polycentropus Polycentropodidae 223 4 Rhyacophila lato sens EPHEMEROPTERES Baetidae 364 2 Baetis Baetidae 363 2 Procloeon Baetidae 363 2 Erachycercus Caenidae 468 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae	5 345 3 1 1 18 47	2 53 5 4 3	1 13 12 1	87 411 15 6	1,95% 9,20% 0,34% 0,13%
Brachycentridae 265 8 Brachycentrus Brachycentridae 268 8 Micrasema Brachycentridae 262 8 Hydropsychidae 211 3 Hydropsychidae 211 3 Leptoceridae 312 4 Mystacides Leptoceridae 310 4 4 Limnephilidae 3163 3 SF Limnephilinae Limnephilidae 276 3 Polycentropus Polycentropodidae 223 4 Polycentropus Polycentropodidae 223 4 Rhyacophila lato sens EPHEMEROPTERES 8 Baetidae 364 2 Baetis Baetidae 363 2 Procloeon Baetidae 363 2 Baetidae 2 Brachycercus Caenidae 468 2 Brachycentridae Brachycentridae Agentria 456 2 Ephemerella Ephemerella Ephemerella Ephemerella Ephemerella Ephemerella Ephemerella<	5 345 3 1 1 18 47	2 53 5 4 3	1 13 12 1	87 411 15 6 5	9,20% 0,34% 0,13%
Brachycentridae 268 8 Micrasema Brachycentridae 262 8 Hydropsyche Hydropsychidae 211 3 Hydropsyche Leptoceridae 312 4 Mystacides Leptoceridae 310 4 Limnephilidae Limnephilidae 276 3 SF Limnephilinae Polycentropodidae 231 4 Polycentropus Polycentropodidae 223 4 Rhyacophila lato sens EPHEMEROPTERES Baetidae 364 2 Baetis Baetidae 363 2 Procloeon Baetidae 363 2 Brachycercus Caenidae 468 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae 449 3 Ephemeridae 502 6 Ephemera Heptageniidae 3181 5 Electrogena	5 345 3 1 1 18 47	2 53 5 4 3	1 13 12 1	411 15 6 5	9,20% 0,34% 0,13%
Brachycentridae 268 8 Micrasema Brachycentridae 262 8 Hydropsyche Hydropsychidae 211 3 Hydropsyche Leptoceridae 312 4 Mystacides Leptoceridae 310 4 Limnephilidae Limnephilidae 276 3 SF Limnephilinae Polycentropodidae 231 4 Polycentropus Polycentropodidae 223 4 Rhyacophila lato sens EPHEMEROPTERES Baetidae 364 2 Baetis Baetidae 363 2 Procloeon Baetidae 363 2 Brachycercus Caenidae 468 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae 449 3 Ephemeridae 502 6 Ephemera Heptageniidae 3181 5 Electrogena	345 3 1 1 18 47	53 5 4 3	13 12 1	411 15 6 5	9,20% 0,34% 0,13%
Hydropsychidae	1 1 18 47	5 4 3	12 1	411 15 6 5	9,20% 0,34% 0,13%
Hydropsychidae	1 1 18 47	5 4 3	12 1	15 6 5	0,34% 0,13%
Hydropsychidae 211 3 Mystacides Leptoceridae 310 4 Mystacides Limnephilidae 3163 3 SF Limnephilinae Limnephilidae 276 3 Polycentropus Polycentropodidae 231 4 Polycentropus Polycentropodidae 223 4 Rhyacophila lato sens EPHEMEROPTERES 8 4 Rhyacophila lato sens Baetidae 364 2 Baetis Baetidae 363 2 Procloeon Baetidae 363 2 Procloeon Baetidae 468 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae 450 3 Ephemerella Ephemeridae 502 6 Ephemera Heptageniidae 3181 5 Electrogena	1 u 18 47	3	I	15 6 5	0,34% 0,13%
Leptoceridae 312 4 Mystacides Leptoceridae 310 4 4 Limnephilidae 3163 3 SF Limnephilinae Limnephilidae 276 3 Polycentropus Polycentropodidae 231 4 Polycentropus Rhyacophilidae 183 4 Rhyacophila lato sens EPHEMEROPTERES 8 8 Baetis Baetidae 364 2 Baetis Baetidae 363 2 Procloeon Baetidae 363 2 Brachycercus Caenidae 468 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae 450 3 Ephemerella Ephemeridae 502 6 Ephemera Heptageniidae 421 5 Ecdyonurus Heptageniidae 3181 5 Electrogena	1 u 18 47	3	I	6 5	0,13%
Leptoceridae 310 4 Immephilidae 3163 3 SF Limnephilinae Limnephilidae 276 3 Polycentropus 3 Polycentropus 4 Polycentropus Polycentropus 4 Polycentropus 2 Baetia 2 Baetia 3 Polycentropus 2 Baetia 3 2 2 2 Baetia 3 2 Procloeon 3 2 Accanidae 457 2 Caenis 2 Baetidae 456 2 2 Ephemerella 450 3 Ephemerella Ephemerellidae	18 47	3		6 5	0,13%
Limnephilidae 3163 3 SF Limnephilinae Limnephilidae 276 3 Polycentropus Polycentropodidae 231 4 Polycentropus Polycentropodidae 223 4 Rhyacophila lato sens Rhyacophilidae 183 4 Rhyacophila lato sens EPHEMEROPTERES 8 8 Baetis Baetidae 364 2 Baetis Baetidae 363 2 Procloeon Baetidae 363 2 Brachycercus Caenidae 468 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae 449 3 Ephemerella Ephemeridae 502 6 Ephemera Heptageniidae 3181 5 Electrogena	18 47	3		5	0,13%
Limnephilidae 276 3 Polycentropus Polycentropodidae 231 4 Polycentropus Polycentropodidae 223 4 Rhyacophila lato sens Rhyacophilidae 183 4 Rhyacophila lato sens EPHEMEROPTERES 8 8 2 Baetis Baetidae 364 2 Baetis Baetidae 363 2 Procloeon Baetidae 363 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae Ephemerellidae 450 3 Ephemerella Ephemeridae 502 6 Ephemera Heptageniidae 421 5 Ecdyonurus Heptageniidae 3181 5 Electrogena	18 47	3		5	ŕ
Polycentropodidae 231 4 Polycentropus Polycentropodidae 223 4 Rhyacophila lato sens Rhyacophilidae 183 4 Rhyacophila lato sens EPHEMEROPTERES 364 2 Baetis Baetidae 390 2 Procloeon Baetidae 363 2 Caenidae 468 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae 450 3 Ephemerella Ephemeridae 449 3 Ephemeridae 502 6 Ephemera Heptageniidae 421 5 Ecdyonurus Heptageniidae 3181 5 Electrogena	18 47	3	2	5	ŕ
Polycentropodidae 223 4 Rhyacophilidae 183 4 Rhyacophila lato sens EPHEMEROPTERES Baetidae 364 2 Baetis Baetidae 390 2 Procloeon Baetidae 363 2 Caenidae 468 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae 450 3 Ephemerella Ephemerellidae 449 3 Ephemeridae 502 6 Ephemera Heptageniidae 421 5 Ecdyonurus Heptageniidae 3181 5 Electrogena	18 47	3	2		0.11%
Rhyacophilidae 183 4 Rhyacophila lato sens EPHEMEROPTERES 364 2 Baetis Baetidae 364 2 Baetis Baetidae 390 2 Procloeon Baetidae 363 2 Caenidae 468 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerella Ephemerellidae 450 3 Ephemerella Ephemeridae 449 3 Ephemera Heptageniidae 421 5 Ecdyonurus Heptageniidae 3181 5 Electrogena	18 47		2		
EPHEMEROPTERES Baetidae 364 2 Baetis Baetidae 390 2 Procloeon Baetidae 363 2 Caenidae 468 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae 450 3 Ephemerella Ephemerellidae 449 3 Ephemeridae 502 6 Ephemera Heptageniidae 421 5 Ecdyonurus Heptageniidae 3181 5 Electrogena	47				0,51%
Baetidae 364 2 Baetis Baetidae 390 2 Procloeon Baetidae 363 2 Caenidae 468 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae 450 3 Ephemerella Ephemerellidae 449 3 Ephemeridae 502 6 Ephemera Heptageniidae 421 5 Ecdyonurus Heptageniidae 3181 5 Electrogena		112			0,51 %
Baetidae 390 2 Procloeon Baetidae 363 2 Caenidae 468 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae 450 3 Ephemerella Ephemerellidae 449 3 Ephemeridae 502 6 Ephemera Heptageniidae 421 5 Ecdyonurus Heptageniidae 3181 5 Electrogena		112	30	•	
Baetidae 363 2 Caenidae 468 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae 450 3 Ephemerella Ephemerellidae 449 3 Ephemeridae 502 6 Ephemera Heptageniidae 421 5 Ecdyonurus Heptageniidae 3181 5 Electrogena	7	1	30		
Caenidae 468 2 Brachycercus Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae 450 3 Ephemerella Ephemerellidae 449 3 Ephemeridae 502 6 Ephemera Heptageniidae 421 5 Ecdyonurus Heptageniidae 3181 5 Electrogena				193	4,32%
Caenidae 457 2 Caenis Caenidae 456 2 Ephemerellidae 450 3 Ephemerella Ephemerellidae 449 3 Ephemeridae 502 6 Ephemera Heptageniidae 421 5 Ecdyonurus Heptageniidae 3181 5 Electrogena	1			193	4,32 %
Caenidae4562Ephemerellidae4503EphemerellaEphemerellidae4493Ephemeridae5026EphemeraHeptageniidae4215EcdyonurusHeptageniidae31815Electrogena		7	2		
Ephemerellidae 450 3 Ephemerella Ephemerellidae 449 3 Ephemeridae 502 6 Ephemera Heptageniidae 421 5 Ecdyonurus Heptageniidae 3181 5 Electrogena	1	1	2	_	0.110/
Ephemerellidae4493Ephemeridae5026EphemeraHeptageniidae4215EcdyonurusHeptageniidae31815Electrogena	65	2.2	0.5	5	0,11%
Ephemeridae5026EphemeraHeptageniidae4215EcdyonurusHeptageniidae31815Electrogena	65	33	85	100	4.40 ~
Heptageniidae4215EcdyonurusHeptageniidae31815Electrogena				183	4,10%
Heptageniidae 3181 5 Electrogena		•	1	1	0,02%
	17	20	1		
		_	2		
Heptageniidae 404 5 Rhithrogena	53	1	2		
Heptageniidae 399 5		_		96	2,15%
Leptophlebiidae 473 7		7		7	0,16%
HETEROPTERES				•	
Aphelocheiridae7213Aphelocheirus	3		4	7	0,16%
Corixidae 719 Micronecta	44		1		
Corixidae 709				45	1,01%
Gerridae 735 Gerris	2			2	0,04%
COLEOPTERES					
Dryopidae 613 Dryops	1				
Dryopidae 610				1	0,02%
Elmidae 620 2 Dupophilus	12				
Elmidae 618 2 Elmis	13	21	13		
Elmidae 619 2 Esolus	12	10	8		
Elmidae 623 2 <i>Limnius</i>	7	1			
Elmidae 622 2 Oulimnius		1	9		
Elmidae 617 2 Stenelmis	1				
Elmidae 614 2				108	2,42%
Hydraenidae 608 Hydraena	8	2	1		
Hydraenidae 607				11	0,25%
DIPTERES					
Athericidae 838	1		2	3	0,07%
Blephariceridae 747	5			5	0,11%
Ceratopogonidae 819	2			2	0,04%
Chironomidae 807 1	1066	121	340	1527	34,18%
Empididae 831	1		2	3	0,07%
Limoniidae 757	2			2	0,04%
Psychodidae 783	1		1	1	0,02%
Simuliidae 801	269	2	2	273	6,11%
Tabanidae 837		1		1	0,02%

CARSO-LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

ODONATES								
ANISOPTERES	9787							
Aeshnidae	670		Boyeria			1		
Aeshnidae	669						1	0,02%
Gomphidae	682		Onychogomphus	2	4	1		
Gomphidae	678						7	0,16%
ZYGOPTERES	9785							
Calopterygidae	650		Calopteryx	2			2	0,04%
MEGALOPTERES								
Sialidae	704		Sialis			3	3	0,07%
CRUSTACES								
AMPHIPODES	3114						•	
Gammaridae	892	2	Gammarus	34	29	56		
Gammaridae	887	2					119	2,66%
DECAPODES								
Astacidae	872		Pacifastacus	1				
Astacidae	864						1	0,02%
AUTRES CRUSTACES								
Cladocères (présence)	3127			P		P	p	p
Copépodes (présence)	3206				P	P	p	p
Ostracodes (présence)	3170			P			p	p
MOLLUSQUES		2					•	
BIVALVES	3468						•	
Sphaeriidae	1043		Pisidium	3	6	9		
Sphaeriidae	1042			2			20	0,45%
GASTEROPODES							•	
Ancylidae	1028		Ancylus	113	43	3	159	3,56%
Hydrobiidae	978		Potamopyrgus		1	5		
Hydrobiidae	973						6	0,13%
Planorbidae	1009				1		1	0,02%
VERS ET AUTRES TAXONS							•	
TURBELLARIA	3326			1 .			:	
Dugesiidae	1055	_		1		1	2	0,04%
OLIGOCHETES	933	1		167	43	122	332	7,43%
NEMATHELMINTHES	3111			3	1		4	0,09%
HYDRACARIENS	906		Hydracarina	16	20	29	65	1,46%
HYDROZOAIRES	3168		Hydrozoa			2	2	0,04%
BRYOZOAIRES	1087		Bryozoa	_		P	p	p
NEMERTIENS (Prostomatidae)	3110		Prostoma	2			2	0,04%
Effectifs:				2906	758	803	4467	1,00

Nombre de taxons 46 32 39

Taxon surligné : non pris en compte dans le calcul de l'indice

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

→ INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLOGIQUES - LE SORNIN A LA CHAPELLE-SOUS-DUN (04410047)

I₂M₂ et état biologique						
I ₂ M ₂	0,681					
Etat biologique(Arrêté du 27/07/18)	Très bon					
Nb taxons contributifs	58					
Métriques en EQR						
Indice de Shannon	0,588					
ASPT	0,715					
Polyvoltinisme	0,591					
Ovoviviparité	0,736					
Richesse taxonomique	0,786					

IBG-DCE									
Nombre de taxons :	39								
Classe de variété (/14) :	11								
Groupe Faunistique Indicateur (/9) :	8								
Taxon Indicateur :	Brachycentridae								
Equivalent I.B.G.N. / 20 :	18								
Taille du cours d'eau /HER /EQR	TP3								
Etat biologique (Arrêté du 27/07/2015)	Très bon								
Robustesse (/20):	17								
Taxon indicateur robustesse	Leuctridae								

OUTIL DIAGNOSTIQUE: probabilités des pressions potentielles Dégradation de l'habitat Qualité de l'eau Ripisylve Matière Organique 0.0 Anthropisation Voies de Matières du BV communication Pesticides Phosphorées 0.4 Instabilité hy drologique Matières HAP Azotées Risque de colmatage Nitrates

M. Mourot
- HydrobiologisteCARSO

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 26/05/2023

(rapport de 6 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7686

Nom du client : SYMISOA

La Genette à La Clayette

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ed	chantillonnage	Analyse			
Date et heure :	13/06/2022 de 11h50 à 13h	Date :	09 et 10/03/2023		
Organisme et Opérateur terrain :	H. Pichol &/ M. Lassau / CARSO	Organisme et Opérateur labo :	P. Weber / CARSO		

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur la Genette à La Clayette (04015025).

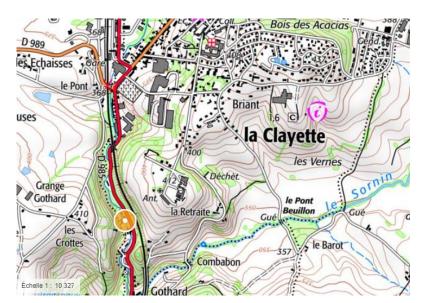
→ RESULTATS DE L'ANALYSE

• I₂M₂:

Station	La Genette à Clayette
I_2M_2	0,193
Etat biologique*	Médiocre

^{*} suivant l'arrêté du 27 juillet 2018

• IBG-DCE:


	La Genette à Clayette			
Nombre de taxons :	25			
Classe de variété (/14) :	8			
Groupe Faunistique Indicateur (/9) :	7			
Taxon Indicateur :	Leuctridae			
Equivalent-IBGN /20 :	14			
Taille du cours d'eau /HER /EQR	TP21 0,72222			
Etat biologique *	Moyen			

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

		Genette à Clayette LSE2206-7686					
Commune:	La Clayette	Coordonnées (Lambert 93)	Amont	Aval			
Département :	Saône et Loire (71)	Х	800056	800067			
Hydro- écorégion :	HER 21 : Massif central Nord	Υ	6576427	6576373			

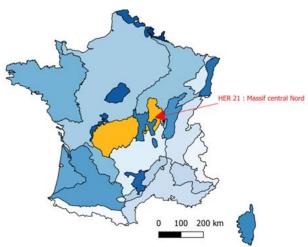


Figure 1 : Localisation de la station d'échantillonnage

→ DESCRIPTION DE LA STATION LA GENETTE A LA CLAYETTE LSE2206-7686

- Conditions environnementales

Accessibilité : -

Météo : temps sec ensoleillé Ensoleillement : Moyen Teinte de l'eau : marron clair

Hydrologie: Basses eaux Visibilité du fond: Moyenne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite
Lit majeur		Urbain	Urbain
Porgos	nature	Artificielle	Artificielle
Berges	pente	Pente forte	Pente forte
Dinjoylya	état	Clairsemée	Clairsemée
Ripisylve	type	Arbustive	Arbustive

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficultenon

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...):

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonicol	es (°C)	20,9	Bon
eaux cyprinicol	es (°C)	20,9	Très bon
Oxygène dissous	(mg O2/L)	7,66	Bon
Saturation en O2 disso	ous (%)	88,1	Bon
Conductivité	(μS/cm)	213	*
pH	(unité de pH)	7,765	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 3,3 m Largeur plein bord Lpb: 4,3 m

Longueur de la station : 77 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 10% Chenal lentique, 10% Plat lentique, 30% Plat courant, 50% Radier,

→ GRILLE D'ECHANTILLONNAGE LA GENETTE A LA CLAYETTE LES2206-7686

Recouvrement des substrats (surface relative sur la station) en fonction des classes de vitesse					Classes de vitesse							
					Rapide V ≥ 75 cm/s N6		Moyenne 25 ≤ V < 75 cm/s N5		Lente 5 ≤ V < 25 cm/s N3		Nulle < 5 cm/s N1	
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	
Bryophytes	S1	7	D	+		+++		++++	B5	++		
Spermaphytes immergés (hydrophytes)	S2											
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3											
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	3	М	++	A4	+++	A1	+				
Sédiments minéraux de grande taille, pierres- galets (25 à 250 mm)	S24	8	D			+	B6					
Blocs facilement déplaçables (>250 mm)	S30	1	М			+	A2					
Graviers (2,5 à 25 mm)	S9	1	М					+	A3			
Spermaphytes émergents (hélophytes)	S10											
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11											
Sables (< 2 mm) - Limons	S25											
Algues - bactéries et champignons filamenteux	S18											
Surfaces uniformes dures naturelles ou artificielles	S29	80	D	+++	В8	+++	B7 C11	++	C9	+	C10	

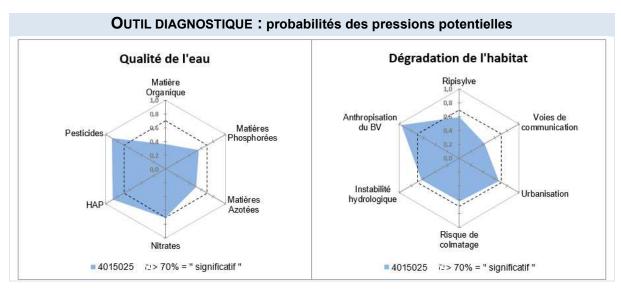
10tai 100 70

- Description des prélèvements élémentaires

N°	Phase	Substrat		vitesse		Matériel utilisé	Hauteur d'eau (cm)	Colmata (nature	1	codes : Intensité 0 : 0%
1	Α	S28	racines-branchages	N5	moyenne	Surber	17	minéral	1	1 : 1-20% 2 : 21-40%
2	Α	S30	blocs	N5	moyenne	Surber	10	minéral	1	3:41-60%
3	Α	S9	graviers	N3	lente	Surber	13	minéral	1	4 : 61-80% 5 : 81-100%
4	Α	S28	racines-branchages	N6	rapide	Surber	5	minéral	1	
5	В	S1	bryophytes	N3	lente	Surber	3	minéral	1	
6	В	S24	pierres	N5	moyenne	Surber	10	minéral	1	
7	В	S29	surfaces uniformes	N5	moyenne	Surber	5	minéral	1	
8	В	S29	surfaces uniformes	N6	rapide	Surber	5	minéral	1	
9	O	S29	surfaces uniformes	N3	lente	Surber	14	minéral	1	
10	С	S29	surfaces uniformes	N1	nulle	Surber	11	minéral	1	
11	С	S29	surfaces uniformes	N5	moyenne	Surber	4	minéral	1	
12	С	S29	surfaces uniformes	N5	moyenne	Surber	2	minéral	1	

→ LISTE FAUNISTIQUE LA GENETTE A LA CLAYETTE LSE2206-7686

N°enregistrement: LSE2206-7686 Cours d'eau : La Genette


Liste faunistique:	Date d'échant	illonnage:	13/06/2022					
TAXONS	code	GI	Genre	A	В	С	Effectif	Abondance
	sandre						total	relative
PLECOPTERES								
Leuctridae	33830	7	Leuctra geniculata			1		
Leuctridae	69	7	Leuctra	2	1	1		
Leuctridae	66	7	Lewerra	2	1		6	0,12%
TRICHOPTERES	00	,		_				0,12 /6
Hydropsychidae	212	3	Hydropsyche	1196	116	160		
Hydropsychidae	211	3	11 yar op syene	1170	110	100	1472	28,81%
Psychomyiidae	239	4	Psychomyia			5	12	20,0170
Psychomyiidae	238	4	1 sychollyta			,	5	0,10%
Rhyacophilidae	183	4	Rhyacophila lato sensu	6	2	3	11	0,22%
EPHEMEROPTERES	103		Tatyacopitta tato sensa			3		0,22 /6
Baetidae	364	2	Baetis	370	152	237		
Baetidae	363	2	Buens	370	132	237	759	14,86%
Ephemerellidae	450	3	Ephemerella	267	138	100	737	14,00 %
Ephemerellidae	449	3	Брнетегена	207	150	100	505	9,88%
COLEOPTERES	449	3						9,88 /6
Elmidae	618	2	Elmis	1	1		•	
Emidae	614	2	Etmus	1	1		2	0,04%
DIPTERES	014	2					2	0,04 %
Anthomyiidae	847			2			2	0,04%
-	807	1		2 515	5.2	69		12,47%
Chironomidae		1			53	09	637	,
Empididae Simuliidae	831			7	, ,	47	7	0,14%
	801			222	11	47	280	5,48%
Tipulidae	753			3			3	0,06%
CRUSTACES	2114						•	
AMPHIPODES	3114			522	101	2.2	•	
Gammaridae	892	2	Gammarus	522	101	23	646	10 (10)
Gammaridae	887	2					646	12,64%
ISOPODES	000	1		202	06		407	5 05 W
Asellidae	880	1		303	96	8	407	7,97%
MOLLUSQUES	2460	2					•	
BIVALVES	3468		D				•	
Sphaeriidae	1043		Pisidium	9				
Sphaeriidae	1044		Sphaerium	2				
Sphaeriidae	1042			10			21	0,41%
GASTEROPODES	4000							
Ancylidae	1028		Ancylus	2	12	9	23	0,45%
Hydrobiidae	978		Potamopyrgus	28	37	27		1000
Hydrobiidae	973			_	_	_	92	1,80%
Lymnaeidae	1004		Radix	9	3	3		
Lymnaeidae	998						15	0,29%
Physidae	997		Physa lato-sensu	3	4			
Physidae	995						7	0,14%
Planorbidae	1009			1	1	1	3	0,06%
VERS ET AUTRES TAXONS							•	
ACHETES		1					•	
Erpobdellidae	928			8			8	0,16%
TURBELLARIA	3326							
Dugesiidae	1055			2	3		5	0,10%
OLIGOCHETES	933	1		151	34	3	188	3,68%
NEMATHELMINTHES	3111			1			1	0,02%
HYDRACARIENS	906		Hydracarina	2	1	1	4	0,08%
BRYOZOAIRES	1087		Bryozoa	P	P	P	p	р
				3646	766	697		1,00

Taxon surligné : non pris en compte dans le calcul de l'indice

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLOGI	QUES - L	GENETTE A CLAYETTE (0	4015025)
I₂M₂ et état biologique	9	IBO	G-DCE
I_2M_2	0,193	Nombre de taxons :	25
Etat biologique(Arrêté du 27/07/18)	Médiocre	Classe de variété (/14) :	8
• • • • • • • • • • • • • • • • • • • •	Wediocie	Groupe Faunistique Indicateur	(/9): 7
Nb taxons contributifs	30	Taxon Indicateur :	Leuctridae
Métriques en EQR		Equivalent I.B.G.N. / 20 :	14
Indice de Shannon	0,566	Taille du cours d'eau /HER /EQ	DR TP21
ASPT	0,192		
Polyvoltinisme	0,018	Etat biologique (Arrêté du 27/07	7/2015)
Ovoviviparité	0,123	Robustesse (/20):	10
Richesse taxonomique	0,139	Taxon indicateur robustesse	Rhyacophilida

M. Mourot - Hydrobiologiste-CARSO I SE HI

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 24/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7694

Nom du client : SYMISOA

Le Ruisseau des Barres

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ec	hantillonnage	Analyse		
Date et heure :	13/06/2022 de 14h00 à 15h15	Date :	23 et 24/03/2023	
Organisme et Opérateur terrain :		Organisme et Opérateur labo :	P. Weber / CARSO	

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le ruisseau des Barres (04410031).

→ RESULTATS DE L'ANALYSE

• I₂M₂:

Station	ruisseau des Barres
I_2M_2	0,406
Etat biologique*	Moyen

^{*} suivant l'arrêté du 27 juillet 2018

• IBG-DCE:

	Ruisseau des Barres			
Nombre de taxons :	40			
Classe de variété (/14) :	11			
Groupe Faunistique Indicateur (/9) :	6			
Taxon Indicateur :	Ephemerid	ae		
Equivalent-IBGN /20 :	16			
Taille du cours d'eau /HER /EQR	TP21	0,83333		
Etat biologique *	Bon			

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

		Ru des Barres LSE2206-7694				
Commune :	Saint Laurent en Brionnais	Coordonnées (Lambert 93)	Amont	Aval		
Département :	Saône et Loire (71)	Х	798039	797987		
Hydro- écorégion :	HER 21 : Massif central Nord	Υ	6575822	6575775		

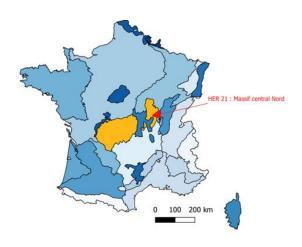


Figure 1 : Localisation de la station d'échantillonnage

→ DESCRIPTION DE LA STATION LE RUISSEAU DES BARRES LSE2206-7694

- Conditions environnementales

Accessibilité: -

Météo : temps sec ensoleillé Ensoleillement : Moyen Teinte de l'eau : marron clair

Hydrologie :Basses eaux Visibilité du fond : Faible

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite
Lit majeur		Prairie	Prairie
Porgos	nature	Naturelle	Naturelle
Berges	pente	Pente moyenne	Pente moyenne
Dinjoylya	état	Dense, Clairsemée	Dense, Clairsemée
Ripisylve	type	Herbacée, Arborescente	Herbacée, Arborescente

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficultenon

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...): 1 calopteryx relâché en phase A

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonicole	s (°C)	20,9	Bon
eaux cyprinicole	s (°C)	20,9	Très bon
Oxygène dissous	(mg O2/L)	7,5	Bon
Saturation en O2 dissor	us (%)	86,5	Bon
Conductivité	(μS/cm)	484	*
рН	(unité de pH)	8,345	Bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 4 m Largeur plein bord Lpb:5 m

Longueur de la station : 75 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement: 80% Plat lentique, 20% Radier,

→ GRILLE D'ECHANTILLONNAGE LE RUISSEAU DES BARRES LSE2206-7694

Recouvrement of	les su	bstrats					Classes	de vites	<u>se</u>		
(surface relative sur la station)			Rapide			Moyenne		Lente		Nulle	
en fonction des cla	sses (de vites	se	V	≥ 75 cm/s N6	25 ≤	V < 75 cm/s N5	5≤	V < 25 cm/s N3	V	< 5 cm/s N1
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev
Bryophytes	S1										
Spermaphytes immergés (hydrophytes)	S2	1	М							+	A1
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3										
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	2	М			++		++	A2	+	
Sédiments minéraux de grande taille, pierres-galets (25 à 250 mm)	S24	40	D			++	B5 C11	+	C10		
Blocs facilement déplaçables (>250 mm)	S30	5	D			+		++	В6		
Graviers (2,5 à 25 mm)	S9	1	М					+	А3		
Spermaphytes émergents (hélophytes)	S10	1	М					+	A4		
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11										
Sables (< 2 mm) - Limons	S25	30	D					++	В7	+	C12
Algues - bactéries et champignons filamenteux	S18	8	D			+		+++	B8	++	
Surfaces uniformes dures naturelles ou artificielles	S29	12	D			+		++	C9		

Total 100 %

- Description des prélèvements élémentaires

N°	Phase		Substrat	,	vitesse	Matériel utilisé	Hauteur d'eau (cm)	Colmat (natur	e /	codes : Intensité 0 : 0%
1	Α	S2	hydrophytes	N1	nulle	Surber	7	-	-	1 : 1-20% 2 : 21-40%
2	Α	S28	racines-branchages	N3	lente	Surber	20	•		3:41-60%
3	Α	S9	graviers	N3	lente	Surber	5	-		4 : 61-80% 5 : 81-100%
4	Α	S10	hélophytes	N3	lente	Surber	5	-	-	
5	В	S24	pierres	N5	moyenne	Surber	10	-	1	
6	В	S30	blocs	N3	lente	Surber	15	-	-	
7	В	S25	sables-limons	N3	lente	Surber	18	-	-	
8	В	S18	algues-champignons	N3	lente	Surber	10	-		
9	С	S29	surfaces uniformes	N3	lente	Surber	5	-	1	
10	С	S24	pierres	N3	lente	Surber	6	-	-	
11	С	S24	pierres	N5	moyenne	Surber	10	-	-	
12	С	S25	sables-limons	N1	nulle	Surber	2	-	-	

→ LISTE FAUNISTIQUE LE RUISSEAU DES BARRES LSE2206-7694

N°enregistrement : LSE2206-7694 Cours d'eau : Ruisseau des Barres

Liste faunistique :	Date d'échanti	illonnage :	13/06/2022					
TAXONS	code	GI	Genre	A	В	C	Effectif	Abondance
	sandre						total	relative
PLECOPTERES								
Leuctridae	69	7	Leuctra			3		
Leuctridae	66	7				_	3	0,05%
TRICHOPTERES	00	,						0,02 /0
Goeridae	286	7		1			1	0,02%
Hydropsychidae	212	3	Hydropsyche	3	2	10		0,02 /6
Hydropsychidae	211	3	Hydropsyche	3	2	10	15	0,23%
Hydroptilidae	200	5	Hydroptila	3	12	11	13	0,23 /6
Hydroptilidae	193	5	Пуагорина	3	12	11	26	0,39%
		4	A.7 : 7		,		20	0,39%
Leptoceridae	311		Athripsodes		1			
Leptoceridae	312	4	Mystacides		1		_	0.026
Leptoceridae	310	4		_			2	0,03%
Limnephilidae	3120	3	SF Drusinae	2				
Limnephilidae	3163	3	SF Limnephilinae	5				
Limnephilidae	276	3					7	0,11%
Rhyacophilidae	183	4	Rhyacophila lato sensu		2	4	6	0,09%
EPHEMEROPTERES								
Baetidae	364	2	Baetis	37	16	31		
Baetidae	390	2	Procloeon			1		
Baetidae	363	2			1		86	1,29%
Ephemerellidae	450	3	Ephemerella		1	3		
Ephemerellidae	449	3	-				4	0,06%
Ephemeridae	502	6	Ephemera	2	3	4	9	0,14%
Heptageniidae	421	5	Ecdyonurus	1				.,
Heptageniidae	443	5	Heptagenia	1				
Heptageniidae	399	5	nepragema	•			2	0,03%
Leptophlebiidae	473	7		1			1	0,02%
HETEROPTERES	473	,		1			1	0,02 /6
Aphelocheiridae	721	3	Aphelocheirus	4	3	5	12	0,18%
Corixidae	5196	3	SF Corixinae	2	3	3	12	0,10 /6
Corixidae	719		Micronecta	8	3			
Corixidae	709		містопесіа	0	3		12	0.200
			TT 1	2			13	0,20%
Hydrometridae	740		Hydrometra	2		,	2	0,03%
Nepidae	725			2		1	3	0,05%
Veliidae	743			1			1	0,02%
COLEOPTERES	610						•	
Dryopidae	613		Dryops	1				
Dryopidae	610						1	0,02%
Dytiscidae	2395		SF Colymbetinae	1				
Dytiscidae	2393		SF Hydroporinae	1				
Dytiscidae	527						2	0,03%
Elmidae	618	2	Elmis	41	11	28	ľ	
Elmidae	619	2	Esolus	7	18	14	ľ	
Elmidae	623	2	Limnius	5	18	10		
Elmidae	622	2	Oulimnius	1	1	4		
Elmidae	625	2	Riolus	15	17	17		
Emidae	614	2					207	3,11%
Hydrophilidae	2517		SF Hydrophilinae			1		
Hydrophilidae	571		' '				1	0,02%
Scirtidae	636	I	Helodes	1			ľ	
Scirtidae	634	I					1	0,02%
DIPTERES								. ,= .0
Ceratopogonidae	819			1			1	0,02%
Chironomidae	807	1		250	656	360	1266	19,04%
Limoniidae	757	1		14	12	11	37	0,56%
Psychodidae Psychodidae	783	I		1	12	11	1	0,02%
Ptychopteridae	789	I		3			3	0,02 %
Tipulidae	753			3		1	1	0,03 %
Tipulitat	133					I	L 1	0,04 70

CARSO-LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

<i>ODONATES</i>								
ANISOPTERES	9787							
Gomphidae	682		Onychogomphus		1			
Gomphidae	678						1	0,02%
MEGALOPTERES								
Sialidae	704		Sialis	6	7	2	15	0,23%
CRUSTACES								
AMPHIPODES	3114							
Gammaridae	892	2	Gammarus	1415	1365	1202		
Gammaridae	887	2					3982	59,90%
ISOPODES								
Asellidae	880	1			1		1	0,02%
DECAPODES								
Cambaridae	870		Orconectes	3	1			
Cambaridae	2024						4	0,06%
AUTRES CRUSTACES								
Cladocères (présence)	3127			P	P		р	p
Copépodes (présence)	3206			P	P		р	p
MOLLUS QUES		2						
BIVALVES	3468							
Sphaeriidae	1043		Pisidium	4	6			
Sphaeriidae	1042						10	0,15%
GASTEROPODES								
Ancylidae	1028		Ancylus	1	4	2	7	0,11%
Hydrobiidae	978		Potamopyrgus	140	137	56		
Hydrobiidae	973						333	5,01%
Lymnaeidae	1004		Radix		1			
Lymnaeidae	998						1	0,02%
VERS ET AUTRES TAXONS								
ACHETES		1						
Erpobdellidae	928			3			3	0,05%
Glossiphoniidae	908			6	29	21	56	0,84%
OLIGOCHETES	933	1		137	216	41	394	5,93%
NEMATHELMINTHES	3111			44	1	2	47	0,71%
HYDRACARIENS	906		Hydracarina	20	9	10	39	0,59%
HYDROZOAIRES	3168		Hydrozoa	36	5		41	0,62%
Effectifs:				2232	2561	1855	6648	1,0
Nombre de taxons				44	34	27		

Taxon surligné : non pris en compte dans le calcul de l'indice

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

→ INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLOGIQUES - LE RUISSEAU DES BARRES (04410031)

I₂M₂ et état biologique	
I_2M_2	0,406
Etat biologique(Arrêté du 27/07/18)	Moyen
Nb taxons contributifs	54
Métriques en EQR	
Indice de Shannon	0,178
ASPT	0,394
Polyvoltinisme	0,405
Ovoviviparité	0,360
Richesse taxonomique	0,738

IBG-DCE	
Nombre de taxons :	40
Classe de variété (/14) :	11
Groupe Faunistique Indicateur (/9) :	6
Taxon Indicateur :	Ephemeridae
Equivalent I.B.G.N. / 20 :	16
Taille du cours d'eau /HER /EQR	TP3
Etat biologique (Arrêté du 27/07/2015)	Bon
Robustesse (/20):	15
Taxon indicateur robustesse	Hydroptilidae

OUTIL DIAGNOSTIQUE: probabilités des pressions potentielles Dégradation de l'habitat Qualité de l'eau Ripisylve Matière Organique Anthropisation Voies de du BV Matières communication Pesticides Phosphorées 0,4 Instabilité Urbanisation Matières hydrologique HAP Azotées Risque de colmatage Nitrates ■ 4410031 ご> 70% = " significatif "

M. Mourot
- Hydrobiologiste-

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 24/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7696

Nom du client : SYMISOA

Le Mussy à Saint-Maurice-Les-Chateauneuf

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ed	chantillonnage	Analyse			
Date et heure :	13/06/2022 de 15h55 à 17h	Date :	28 et 29/03/2023		
Organisme et Opérateur terrain :	P. Weber & P. Porcherot / CARSO	Organisme et Opérateur labo :	P. Weber / CARSO		

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le Mussy à Saint-Maurice-les-Chateauneuf (04410036).

→ RESULTATS DE L'ANALYSE

• I_2M_2 :

Station	le Mussy à Saint-Maurice- les-Chateauneuf
I ₂ M ₂	0,750
Etat biologique*	Très bon

^{*} suivant l'arrêté du 27 juillet 2018

• IBG-DCE:

	Le Mussy à St Maurice			
	Les-Chateau	neuf		
Nombre de taxons :	43			
Classe de variété (/14) :	12			
Groupe Faunistique Indicateur (/9) :	7			
Taxon Indicateur :	Leuctridae	Э		
Equivalent-IBGN /20 :	18			
Taille du cours d'eau /HER /EQR	TP21	0,94444		
Etat biologique *	Très bon			

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

		Mussy à St-Maurice-les-Chateaun LSE2206-7688				
Commune :	St-Maurice-les- Chateauneauf	Coordonnées (Lambert 93)	Amont	Aval		
Département :	Saône et Loire (71)	Х	797917	797863		
Hydro- écorégion :	HER 21 : Massif central Nord	Y	6570211	6570185		

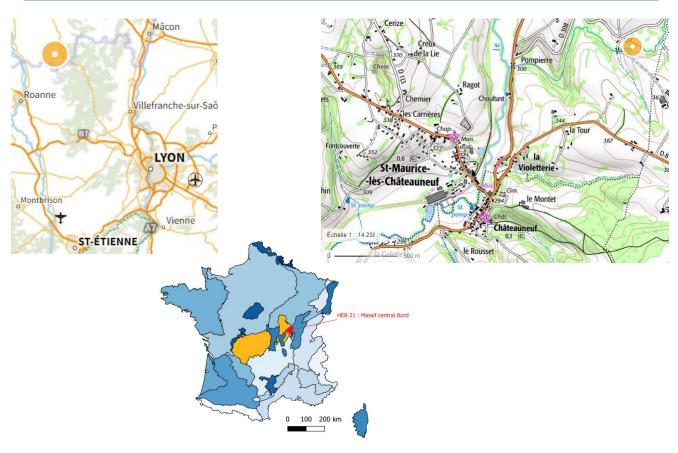


Figure 1 : Localisation de la station d'échantillonnage

- Photos de la station :

Amont de la station

Aval de la station

→ <u>DESCRIPTION DE LA STATION LE MUSSY A SAINT-MAURICE-LES-CHATEAUNEUF LSE2206-7696</u>

- Conditions environnementales

Accessibilité : -

Météo : temps sec ensoleillé Ensoleillement : Nul Teinte de l'eau : incolore

Hydrologie : Basses eaux Visibilité du fond : Faible

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite
Lit majeur		Prairie	Prairie
Porgos	nature	Naturelle	Naturelle
Berges	pente	Pente moyenne	Pente moyenne
Diniculus	état	Clairsemée	Clairsemée
Ripisylve	type	Herbacée, Arbustive, Arborescente	Herbacée, Arbustive, Arborescente

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficulténon

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...): 1 calopteryx relâché en phase A

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'ea	u		
eaux salmonic	oles (°C)	19,5	Très bon
eaux cyprinic	oles (°C)	19,5	Très bon
Oxygène dissous	(mg O2/L)	8,13	Très bon
Saturation en O2 dis	sous (%)	90,6	Très bon
Conductivité	(μS/cm)	144,8	*
рН	(unité de pH)	7,36	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 3,5 m Largeur plein bord Lpb:4,1 m

Longueur de la station : 72 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 10% Mouille de concavité, 40% Plat lentique, 20% Plat courant, 30% Radier,

→ GRILLE D'ECHANTILLONNAGE LE MUSSY A SAINT-MAURICE-LES-CHATEAUNEUF LSE2206-**7696**

Recouvrement of	les su	bstrats					Classes	de vites	<u>se</u>		
(surface relative sur la station) en fonction des classes de vitesse			Rapide V ≥ 75 cm/s N6		Moyenne 25 ≤ V < 75 cm/s N5		5≤	Lente V < 25 cm/s N3	Nulle V < 5 cm/s N1		
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev
Bryophytes	S1	1	М			+		+++	A1	++	
Spermaphytes immergés (hydrophytes)	S2										
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3										
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	2	М			++	A2	+			
Sédiments minéraux de grande taille, pierresgalets (25 à 250 mm)	S24	42	D			+++	B5 C12	++	B8	+	C10
Blocs facilement déplaçables (>250 mm)	S30	2	М					++	А3	+	
Graviers (2,5 à 25 mm)	S9	2	М					+	A4		
Spermaphytes émergents (hélophytes)	S10										
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11										
Sables (< 2 mm) - Limons	S25	15	D					++	В6	+	
Algues - bactéries et champignons filamenteux	S18	1	М								
Surfaces uniformes dures naturelles ou artificielles	S29	35	D			+	C11	+++	В7	++	C9

100 %

- Description des prélèvements élémentaires

N°	Phase		Substrat		vitesse	Matériel utilisé	Hauteur d'eau (cm)	Colmata (nature	1	codes : Intensité 0 : 0%
1	Α	S1	bryophytes	N3	lente	Surber	20	minéral	1	1 : 1-20% 2 : 21-40%
2	Α	S28	racines-branchages	N5	moyenne	Surber	20	-	-	3 : 41-60%
3	Α	S30	blocs	N3	lente	Surber	20	-	-	4 : 61-80% 5 : 81-100%
4	Α	S9	graviers	N3	lente	Surber	8	-	-	
5	В	S24	pierres	N5	moyenne	Surber	4	-	-	
6	В	S25	sables-limons	N3	lente	Surber	4	-	-	
7	В	S29	surfaces uniformes	N3	lente	Surber	10	minéral	1	
8	В	S24	pierres	N3	lente	Surber	7	-	-	
9	С	S29	surfaces uniformes	N1	nulle	Surber	18	minéral	1	
10	С	S24	pierres	N1	nulle	Surber	2	minéral	1	
11	С	S29	surfaces uniformes	N5	moyenne	Surber	3	-	-	
12	С	S24	pierres	N5	moyenne	Surber	2	-	-	

→ LISTE FAUNISTIQUE LE MUSSY A SAINT-MAURICE-LES-CHATEAUNEUF LSE2206-7696

 N° enregistrement : LSE2206-7696 Cours d'eau : Mussy

Liste faunistique : Date d'échantillonnage : 14/06/2022

Liste faunistique :	Date d'échant	illonnage :	14/06/2022					
TAXONS	code	GI	Genre	A	В	C	Effectif	Abondance
	sandre						total	relative
PLECOPTERES								
Chloroperlidae	170	9	Chloroperla	1				
Chloroperlidae	169	9					1	0,01%
Leuctridae	33830	7	Leuctra geniculata	192	864	396	_	3,0 = 10
Leuctridae	66	7					1452	21,46%
Nemouridae	46	6	Protonemura	2		9	1.02	21,10 /6
Nemouridae	20	6	Trotonemura	_			11	0,16%
Perlidae	164	9	Perla			1		0,20 /0
Perlidae	155	9					1	0,01%
Perlodidae	140	9	Isoperla		1	1	_	3,0 = 10
Perlodidae	127	9	1				2	0,03%
TRICHOPTERES	127							0,00 %
Glossosomatidae	189	7				4	4	0,06%
Goeridae	286	7				1	1	0,01%
Hydropsychidae	212	3	Hydropsyche	310	42	80	1	0,01 /6
Hydropsychidae	211	3	11yaropsyche	310	72	30	432	6,38%
Hydroptilidae	198	5	Ithytrichia	2			732	0,50 /0
Hydroptilidae	198	5	ппунини				2	0,03%
Leptoceridae	317	4	Oecetis		1			0,03 70
Leptoceridae	310	4	Oecens		1		1	0,01%
Limnephilidae	3163	3	SF Limnephilinae		1		1	0,01 %
Limnephilidae	276	3	SI Limnephilinae		1		1	0,01%
Polycentropodidae	276	4	Doluosutuonus	1	1	,	1	0,01%
Polycentropodidae	223	4	Polycentropus	1 2	1 1	1	6	0,09%
	183	4	Dhuasanhila lata asusu		5	10		,
Rhyacophilidae EPHEMEROPTERES	183	4	Rhyacophila lato sensu	14	3	18	37	0,55%
Baetidae	364	2	Baetis	66	115	38	•	
Baetidae	363		Baeits	00	113	30	210	2 2407
		2				,	219	3,24%
Caenidae Caenidae	457 456	2 2	Caenis			1		0.017
	456 450		E-111	180	25	25	1	0,01%
Ephemerellidae	450	3	Ephemerella	180	23	35	240	2.550
Ephemerellidae	449	3	F 1	,		0	240	3,55%
Ephemeridae	502	6	Ephemera	4	6	9	19	0,28%
Heptageniidae	421	5	Ecdyonurus	14	61	7		
Heptageniidae	3181	5	Electrogena	5	1	1		
Heptageniidae	400	5	Epeorus		1	163		
Heptageniidae	404	5	Rhithrogena	8	153	163	44.4	(100
Heptageniidae	399	5		_		2	414	6,12%
Leptophlebiidae	473	7	01:	2	9	3	14	0,21%
Oligoneuriidae	394		Oligoneuriella			1	1	0,01%
HETEROPTERES	701	2	AI. 1. 1. 1.	,	2		•	0.000
Aphelocheiridae	721	3	Aphelocheirus	4	2		6	0,09%
Corixidae	719		Micronecta		1			0.04 ~
Corixidae	709		a .				1	0,01%
Gerridae	735		Gerris	1	1		2	0,03%
COLEOPTERES	626	_	D 111	_	0.5	17	•	
Elmidae	620	2	Dupophilus	2	95	46		
Elmidae	618	2	Elmis	107	5	43		
Elmidae	619	2	Esolus	15	96	44		
Elmidae	623	2	Limnius		10	5		
Elmidae	622	2	Oulimnius	4		6		
Elmidae	614	2					478	7,06%
Hydraenidae	608		Hydraena	14	31	25		
Hydraenidae	607						70	1,03%
Hydrophilidae	2517		SF Hydrophilinae		1			
Hydrophilidae	571						1	0,01%

DIPTERES								
Athericidae	838			1		4	5	0,07%
Blephariceridae	747			1		2	3	0,04%
Ceratopogonidae	819					1	1	0,01%
Chironomidae	807	1		700	900	930	2530	37,39%
Dixidae	793			1		2	3	0,04%
Empididae	831			2		5	7	0,10%
Limoniidae	757			13	27	33	73	1,08%
Psychodidae	783				5	1	6	0,09%
Simuliidae	801			5	2	4	11	0,16%
Tabanidae	837				1		1	0,01%
Tipulidae	753				8		8	0,12%
ODONATES								
ANISOPTERES	9787							
Gomphidae	682		Onychogomphus		1	8		
Gomphidae	678		, , ,				9	0,13%
ZYGOPTERES	9785							ŕ
Calopterygidae	650		Calopteryx	2			2	0,03%
MEGALOPTERES			y y					
Sialidae	704		Sialis		1	1	2	0,03%
PLANIPENNES								
Osmylidae	854		Osmylus	1			1	0,01%
CRUSTACES								3,02.10
AMPHIPODES	3114							
Gammaridae	892	2	Gammarus	25	2	9		
Gammaridae	887	2					36	0,53%
DECAPODES								7,22
Astacidae	872		Pacifastacus	1				
Astacidae	864		1 de gastaens				1	0,01%
AUTRES CRUSTACES								0,0270
Cladocères (présence)	3127			P	P	P	p	p
Copépodes (présence)	3206			P	P	P	p	p
Ostracodes (présence)	3170				P		p	p
MOLLUSQUES	23.0	2						F
GASTEROPODES								
Ancylidae	1028		Ancylus	1	1	31	33	0,49%
Hydrobiidae	978		Potamopyrgus	1	16	3		2,22
Hydrobiidae	973						20	0,30%
VERS ET AUTRES TAXONS								
ACHETES		1						
Branchiobdellidae	5191		Branchiobdella	3				
Branchiobdellidae	3132						3	0,04%
OLIGOCHETES	933	1		20	195	116	331	4,89%
NEMATHELMINTHES	3111			1	1	3	5	0,07%
HYDRACARIENS	906		Hydracarina	162	40	56	258	3,81%
Effectifs:			<u> </u>	1890	2729	2147	6766	1,00
Nombre de taxons				41	42	43		1,00

Taxon surligné : non pris en compte dans le calcul de l'indice

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

→ INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLOGIQUES - LE MUSSY A ST-MAURICE-LES-CHATEAUNEUF (04410036)

I₂M₂ et état biologique					
I_2M_2	0,750				
Etat biologique(Arrêté du 27/07/18)	Très bon				
Nb taxons contributifs	57				
Métriques en EQR					
Indice de Shannon	0,523				
ASPT	0,809				
Polyvoltinisme	0,746				
Ovoviviparité	0,828				
Richesse taxonomique	0,810				

IBG-DCE									
Nombre de taxons : 43									
Classe de variété (/14) :	12								
Groupe Faunistique Indicateur (/9) :	7								
Taxon Indicateur :	Leuctridae								
Equivalent I.B.G.N. / 20 :	18								
Taille du cours d'eau /HER /EQR	TP3								
Etat biologique (Arrêté du 27/07/2015) Très bon									
Robustesse (/20): 18									
Taxon indicateur robustesse Leptophlebiidae									

OUTIL DIAGNOSTIQUE: probabilités des pressions potentielles Dégradation de l'habitat Qualité de l'eau Ripisylve Matière Organique Anthropisation Voies de communication Matières du BV Pesticides Phosphorées 0,4 Instabilité Urbanisation Matières hydrologique HAP Azotées Risque de colmatage Nitrates ■ 4410036 ご> 70% = " significatif " ■ 4410036 72 > 70% = " significatif "

M. Mourot
- HydrobiologisteCARSO

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 24/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7695

Nom du client : SYMISOA

Le Botoret à Tancon

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ec	hantillonnage		Analyse
Date et heure :	14/06/2022 de 11h50 à 13h45	Date :	27 et 28/03/2023
Organisme et Opérateur terrain :		Organisme et Opérateur labo :	P. Weber / CARSO

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le Botoret à Tancon (04410033).

→ RESULTATS DE L'ANALYSE

• <u>l₂M₂</u>:

Station	le Botoret à Tancon
I_2M_2	0,578
Etat biologique*	Bon

^{*} suivant l'arrêté du 27 juillet 2018

• <u>IBG-DCE</u>:

	Le Botoret à Ta	ancon
Nombre de taxons :	29	
Classe de variété (/14) :	9	
Groupe Faunistique Indicateur (/9) :	7	
Taxon Indicateur :	Leuctridae	е
Equivalent-IBGN /20 :	15	
Taille du cours d'eau /HER /EQR	TP3	0,77778
Etat biologique *	Bon	

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

			Botoret à Tancon LSE2206-7695			
Commune :	Tancon		Amont	Aval		
Département :	Saône et Loire (71)	Х	796859	796828		
Hydro- écorégion :	HER 3 : Massif central Sud	Y	6566327	6565790		

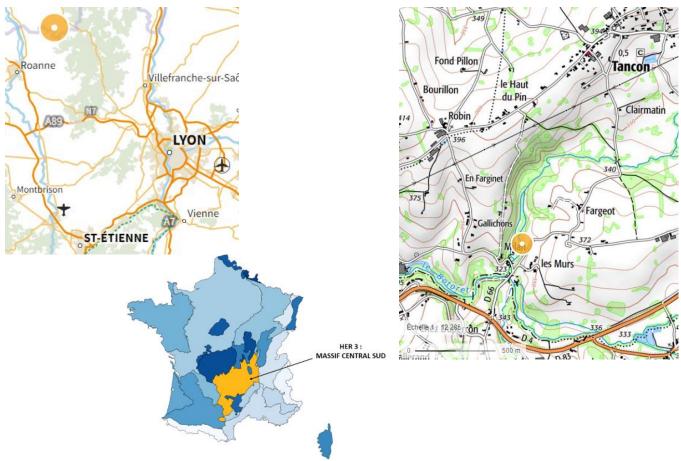


Figure 1 : Localisation de la station d'échantillonnage

- Photos de la station :

Amont de la station

→ DESCRIPTION DE LA STATION LE BOTORET A TANCON LSE2206-7695

- Conditions environnementales

Accessibilité : -

Météo : temps sec ensoleillé Ensoleillement : Faible Teinte de l'eau : incolore

Hydrologie : Basses eaux Visibilité du fond : Bonne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite
Lit maje	ur	Prairie ; Boisé	Prairie ; Boisé
Berges	nature	Naturelle et artificielle	Naturelle et artificielle
berges	pente	Pente forte	Pente moyenne
Dinioulus	état	Dense, Clairsemée	Dense, Clairsemée
Ripisylve	type	Herbacée, Arbustive, Arborescente	Herbacée, Arbustive, Arborescente

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficulténon

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...):

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonico	les (°C)	16,6	Très bon
eaux cyprinico	les (°C)	16,6	Très bon
Oxygène dissous	(mg O2/L)	8,84	Très bon
Saturation en O2 diss	ous (%)	93,1	Très bon
Conductivité	(µS/cm)	201	*
pН	(unité de pH)	7,56	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 3,5 m Largeur plein bord Lpb:9,2 r

Longueur de la station : 110 m, correspondant à 2 séquences radiers /mouilles

Faciès d'écoulement :5% Plat lentique, 35% Plat courant, 60% Radier,

→ GRILLE D'ECHANTILLONNAGE LE BOTORET A TANCON LSE2206-7695

Recouvrement of	des su	bstrats					Classes	de vites	<u>se</u>		
(surface relative en fonction des cla			se		Rapide ≥ 75 cm/s N6		Moyenne V < 75 cm/s N5	5≤	Lente V < 25 cm/s N3	V	Nulle < 5 cm/s N1
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev
Bryophytes	S1	1	М			++	A1	+			
Spermaphytes immergés (hydrophytes)	S2										
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3	1	М							+	A2
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	1	М					++	А3	+	
Sédiments minéraux de grande taille, pierres-galets (25 à 250 mm)	S24	40	D			+++	B5 C12	++	C9	+	C10
Blocs facilement déplaçables (>250 mm)	S30	5	D					++	В6	+	
Graviers (2,5 à 25 mm)	S9	18	D					++	B7	+	
Spermaphytes émergents (hélophytes)	S10										
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11										
Sables (< 2 mm) - Limons	S25	4	М					++	A4	+	
Algues - bactéries et champignons filamenteux	S18										
Surfaces uniformes dures naturelles ou artificielles	S29	30	D			+++	В8	++	C11	+	

Total 100 %

- Description des prélèvements élémentaires

					=					
N°	Phase		Substrat		vitesse	Matériel utilisé	Hauteur d'eau (cm)	Colmata (nature	1	codes : Intensité 0 : 0%
1	Α	S1	bryophytes	N5	moyenne	Surber	5	1	-	1 : 1-20% 2 : 21-40%
2	Α	S3	litières	N1	nulle	Surber	20	-	-	3 : 41-60%
3	Α	S28	racines-branchages	N3	lente	Surber	20	minéral	2	4 : 61-80% 5 : 81-100%
4	Α	S25	sables-limons	N3	lente	Surber	20	minéral	1	
5	В	S24	pierres	N5	moyenne	Surber	10	-	-	
6	В	S30	blocs	N3	lente	Surber	15	-	-	
7	В	S9	graviers	N3	lente	Surber	10	-	-	
8	В	S29	surfaces uniformes	N5	moyenne	Surber	10	-	-	
9	С	S24	pierres	N3	lente	Surber	10	-	-	
10	С	S24	pierres	N1	nulle	Surber	10	minéral	2	
11	С	S29	surfaces uniformes	N3	lente	Surber	20	minéral	1	
12	С	S24	pierres	N5	moyenne	Surber	8	-	-	

→ LISTE FAUNISTIQUE LE BOTORET A TANCON LSE2206-7695

N°enregistrement : LSE2206-7695 Cours d'eau : Le Botoret

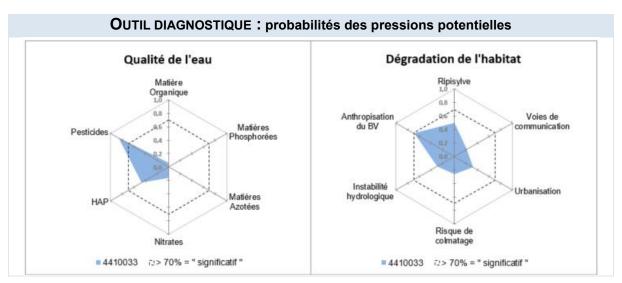
Liste faunistique : Date d'échantillonnage: 14/06/2022

Liste faunistique :	Date d'échanti	llonnage :	14/06/2022					
TAXONS	code	GI	Genre	A	В	C	Effectif	Abondance
	sandre						total	relative
PLECOPTERES								
Chloroperlidae	170	9	Chloroperla		1			
Chloroperlidae	169	9	,				1	0,05%
Leuctridae	33830	7	Leuctra geniculata	18	27	24		,
Leuctridae	66	7	8	16	1	20	106	5,28%
Nemouridae	21	6	Amphinemura		1			,
Nemouridae	20	6	<i>q</i>				1	0,05%
TRICHOPTERES								
Hydropsychidae	212	3	Hydropsyche	38	4	5		
Hydrops ychidae	211	3	11 juropsyene	20	•		47	2,34%
Leptoceridae	312	4	Mystacides	1			• • •	2,0170
Leptoceridae	310	4	111 ystactaes	1			1	0,05%
Limnephilidae	3163	3	SF Limnephilinae	1			-	0,02 /0
Limnephilidae	276	3	эт иттериниче	1			1	0,05%
Polycentropodidae	231	4	Polycentropus		3	2	1	0,03 /6
_	223	4	Топусенториз	1	3	1	10	0.50%
Polycentropodidae Rhyacophilidae	183	4	Rhyacophila lato sensu	1 15	10	11	36	0,50%
EPHEMEROPTERES	185	4	Knyacopniia iaio sensu	13	10	11	30	1,79%
Baetidae EPHEMEROPIEKES	264	2	D		100	52	•	
	364	2	Baetis	66	108	52	226	11.05%
Baetidae	363	2	F 1 11	520	2.2	26	226	11,25%
Ephemerellidae	450	3	Ephemerella	538	33	36	<0 =	20.22%
Ephemerellidae	449	3					607	30,23%
Ephemeridae	502	6	Ephemera	_	1	1	2	0,10%
Heptageniidae	421	5	Ecdyonurus	5	17	13		
Heptageniidae	404	5	Rhithrogena	2	60	66		
Heptageniidae	399	5		1	1		165	8,22%
Leptophlebiidae	491	7	Habrophlebia		3	1		
Leptophlebiidae	473	7		4	4	1	13	0,65%
HETEROPTERES								
Corixidae	719		Micronecta			1		
Corixidae	709						1	0,05%
Gerridae	735		Gerris			2	2	0,10%
COLEOPTERES								
Elmidae	620	2	Dupophilus	6	21	10		
Elmidae	618	2	Elmis	9		1		
Elmidae	619	2	Esolus		3	2		
Elmidae	623	2	Limnius	1		1		
Elmidae	622	2	Oulimnius	2		1		
Elmidae	614	2					57	2,84%
Hydraenidae	608		Hydraena	10		4		
Hydraenidae	607						14	0,70%
DIPTERES								
Chironomidae	807	1		454	25	12	491	24,45%
Dixidae	793				1		1	0,05%
Dolichopodidae	836					1	1	0,05%
Limoniidae	757			4	19	16	39	1,94%
Psychodidae	783			2			2	0,10%
Simuliidae	801			7	1	8	16	0,80%
				-	-			- / /-

CARSO-LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

ODONATES							•	
ANISOPTERES	9787							
Gomphidae	682		Onychogomphus	1		1		
Gomphidae	678						2	0,10%
CRUSTACES							•	
AMPHIPODES	3114						•	
Gammaridae	892	2	Gammarus	31		2		
Gammaridae	887	2					33	1,64%
ISOPODES								
Asellidae	880	1		4			4	0,20%
DECAPODES								
Astacidae	872		Pacifastacus	1	1	1		
Astacidae	864						3	0,15%
AUTRES CRUSTACES								
Cladocères (présence)	3127			P			р	р
Copépodes (présence)	3206			P		P	p	р
MOLLUS QUES		2					•	
GASTEROPODES								
Ancylidae	1028		Ancylus	1		4	5	0,25%
Hydrobiidae	978		Potamopyrgus	1	1	1		
Hydrobiidae	973						3	0,15%
VERS ET AUTRES TAXONS								
OLIGOCHETES	933	1		38	41	24	103	5,13%
NEMATHELMINTHES	3111			3			3	0,15%
HYDRACARIENS	906		Hydracarina	10	1	1	12	0,60%
Effectifs :				1291	391	326	2008	1,00


Nombre de taxons 33 26 33

Taxon surligné : non pris en compte dans le calcul de l'indice

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

→ INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLOG	IQUES – L	E BOTORET A TANCON (044100	033)
l₂M₂ et état biologique		IBG-DCE	
I ₂ M ₂	0,578	Nombre de taxons :	29
Etat hiologiqua (Arrêté du 27/07/19)	Bon	Classe de variété (/14) :	9
Etat biologique(Arrêté du 27/07/18)		Groupe Faunistique Indicateur (/9) :	7
Nb taxons contributifs	41	Taxon Indicateur :	Leuctridae
Métriques en EQR		Equivalent I.B.G.N. / 20 :	15
Indice de Shannon	0,470	Taille du cours d'eau /HER /EOR	TP3
ASPT	0,724		•
Polyvoltinisme	0,538	Etat biologique (Arrêté du 27/07/2015)	Bon
Ovoviviparité	0,711	Robustesse (/20):	14
Richesse taxonomique	0,357	Taxon indicateur robustesse	Leptophlebiid

M. Mourot
- HydrobiologisteCARSO
LSEHL

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 24/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7693

Nom du client : SYMISOA

L'Aron à Coublanc

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ec	hantillonnage	Analyse		
Date et heure :	Le 14/06/2022 de 8h20 à 10h10	Date :	21 et 22/03/2023	
Organisme et Opérateur terrain :	P. Weber & P. Porcherot/ CARSO	Organisme et Opérateur labo :	P. Weber / CARSO	

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases*Fixation de l'échantillon : *alcool 96%*Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur l'Aron à Coublanc (04410029).

→ RESULTATS DE L'ANALYSE

I₂M₂:

Station	l'Aron à Coublanc
I ₂ M ₂	0,583
Etat biologique*	Bon

^{*} suivant l'arrêté du 27 juillet 2018

• IBG-DCE:

	L'Aron à Coublanc	
Nombre de taxons :	36	
Classe de variété (/14) :	10	
Groupe Faunistique Indicateur (/9) :	7	
Taxon Indicateur :	Leuctridae	
Equivalent-IBGN /20 :	16	
Taille du cours d'eau /HER /EQR	TP3 0,8333	33
Etat biologique *	Bon	

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

		Aron à Coublanc LSE2206-7693				
Commune:	Coublanc	Coordonnées (Lambert 93)	Amont	Aval		
Département :	Saône et Loire (71)	Х	798594	798538		
Hydro- écorégion :	HER 3 : Massif central Sud	Y	6566104	6566107		

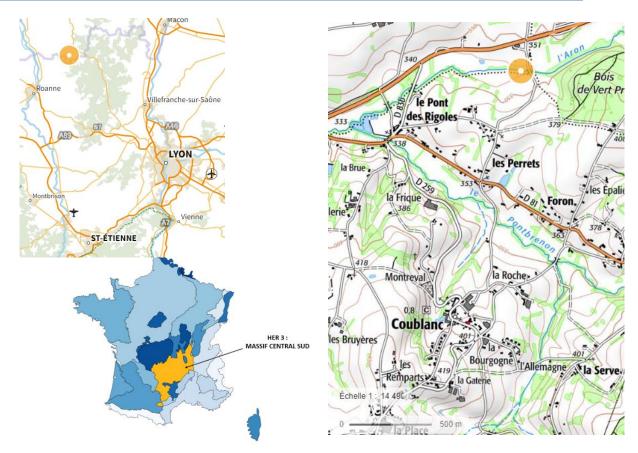


Figure 1 : Localisation de la station d'échantillonnage

- Photos de la station :

Amont de la station

Aval de la station

→ DESCRIPTION DE LA STATION L'ARON A COUBLANC LSE2206-7693

- Conditions environnementales

Accessibilité: -

Météo : temps sec ensoleillé Ensoleillement : Moyen Teinte de l'eau : incolore

Hydrologie : Basses eaux Visibilité du fond : Moyenne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite	
Lit majeur		Agricole	Agricole	
Porgos	nature	Naturelle	Naturelle	
Berges	pente	Pente moyenne	Pente moyenne	
Dinioulus	état	Dense, Clairsemée	Dense	
Ripisylve	type	Herbacée, Arbustive, Arborescente	Herbacée, Arbustive, Arborescente	

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficulte

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...) : 1 Calopteryx relâché en phase A

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonico	les (°C)	14,9	Très bon
eaux cyprinico	les (°C)	14,9	Très bon
Oxygène dissous	(mg O2/L)	8,46	Très bon
Saturation en O2 diss	ous (%)	86,1	Bon
Conductivité	(µS/cm)	165,4	*
рН	(unité de pH)	7,18	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 3,2 m Largeur plein bord Lpb:4 m

Longueur de la station: 64 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 20% Plat lentique, 40% Plat courant, 40% Radier,

→ GRILLE D'ECHANTILLONNAGE L'ARON A COUBLANC LSE2206-7693

Recouvrement d	les su	bstrats					Classes	de vites	sse_		
(surface relative sur la station)					Rapide		Moyenne		Lente	Nulle	
en fonction des cla	sses (de vites	se	V	≥ 75 cm/s N6	25 ≤	V < 75 cm/s N5	5≤	V < 25 cm/s	\ 	< 5 cm/s
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev
Bryophytes	S1	3	М			++		+++	A1	+	
Spermaphytes immergés (hydrophytes)	S2										
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3	2	М					+	A2		
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	2	М					++	A3	+	
Sédiments minéraux de grande taille, pierres- galets (25 à 250 mm)	S24	72	D			+++	B5 C9 C12	++	B7 C10	+	B8 C11
Blocs facilement déplaçables (>250 mm)	S30	1	М			++	A4	+			
Graviers (2,5 à 25 mm)	S9	15	D					++	В6	+	
Spermaphytes émergents (hélophytes)	S10		Р					+			
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11										
Sables (< 2 mm) - Limons	S25	3	М					++		+	
Algues - bactéries et champignons filamenteux	S18										
Surfaces uniformes dures naturelles ou artificielles	S29	2	М					++		+	

Total 100 %

- Description des prélèvements élémentaires

N°	Phase		Substrat	Substrat vitesse Matériel Hauteur d'eau (cm.			Hauteur d'eau (cm)	Colmata (nature intensi	e /	codes : Intensité 0 : 0%
1	Α	S1	bryophytes	N3	lente	Surber	4	-	-	1 : 1-20% 2 : 21-40%
2	Α	S3	litières	N3	lente	Surber	4	-	-	3 : 41-60%
3	Α	S28	racines-branchages	N3	lente	Surber	10	-	-	4 : 61-80% 5 : 81-100%
4	Α	S30	blocs	N5	moyenne	Surber	10	-	-	
5	В	S24	pierres	N5	moyenne	Surber	10	-	-	
6	В	S9	graviers	N3	lente	Surber	6	-	-	
7	В	S24	pierres	N3	lente	Surber	17	-	-	
8	В	S24	pierres	N1	nulle	Surber	12	-	-	
9	С	S24	pierres	N5	moyenne	Surber	8	-	-	
10	С	S24	pierres	N3	lente	Surber	7	-	-	
11	С	S24	pierres	N1	nulle	Surber	15	-	-	
12	С	S24	pierres	N5	moyenne	Surber	13	-	-	

→ LISTE FAUNISTIQUE L'ARON A COUBLANC LSE2206-7693

N°enregistrement: LSE2206-7693 Cours d'eau : Aron

Liste faunistique :	Date d'échanti	illonnage:	14/06/2022					
TAXONS	code	GI	Genre	A	B	C	Effectif	Abondance
	sandre						total	relative
PLECOPTERES								
Chloroperlidae	170	9	Chloroperla			1		
Chloroperlidae	169	9	,				1	0,02%
Leuctridae	33830	7	Leuctra geniculata	9	32	38		,
Leuctridae	66	7		6		136	221	3,56%
Nemouridae	46	6	Protonemura		1	120		0,00 %
Nemouridae	20	6	Trotonemana		-		1	0,02%
TRICHOPTERES	20	, and the second						0,02 /0
Glossosomatidae	189	7			1	1	2	0,03%
Goeridae	286	7			4	4	8	0,13%
Hydropsychidae	212	3	Hydropsyche	10	6	43		0,12 /0
Hydrops ychidae	211	3	Hydropsyche	10		73	59	0,95%
Leptoceridae	311	4	Athripsodes			1	39	0,95%
-			•	2	7	1		
Leptoceridae	312	4	Mystacides	2	7		10	0.166
Leptoceridae	310	4	art. III				10	0,16%
Limnephilidae	3163	3	SF Limnephilinae			1		0.02%
Limnephilidae	276	3		_	_	_	1	0,02%
Polycentropodidae	223	4		3	1	8	12	0,19%
Psychomyiidae	239	4	Psychomyia			1		
Psychomyiidae	238	4					1	0,02%
Rhyacophilidae	183	4	Rhyacophila lato sensu	2	3	10	15	0,24%
EPHEMEROPTERES								
Baetidae	364	2	Baetis	82	164	302		
Baetidae	363	2					548	8,83%
Ephemerellidae	450	3	Ephemerella	42	25	81		
Ephemerellidae	449	3					148	2,38%
Ephemeridae	502	6	Ephemera	4	22	17	43	0,69%
Heptageniidae	421	5	Ecdyonurus		1	6		
Heptageniidae	404	5	Rhithrogena		2	3		
Heptageniidae	399	5				1	13	0,21%
Leptophlebiidae	473	7		27	7	25	59	0,95%
COLEOPTERES								
Elmidae	620	2	Dupophilus	5	27	100		
Elmidae	618	2	Elmis	3	4	5		
Elmidae	619	2	Esolus		2	1		
Elmidae	623	2	Limnius	1	3	7		
Elmidae	622	2	Oulimnius	2	1	2		
Emidae	614	2	J	I -		1 ~	163	2,63%
Hydraenidae	608	l -	Hydraena			1	100	2,00 /0
Hydraenidae	607		принисни			1	1	0,02%
Hydrophilidae	2517		SF Hydrophilinae		3		·	0,02 /0
Hydrophilidae	571		эт туаторишиае		,		2	0.05%
DIPTERES	3/1						3	0,05%
	0.47			1		7		0.020
Anthomyiidae	847			1		1	2	0,03%
Ceratopogonidae	819			2 2 4 0 7	202	1	3	0,05%
Chironomidae	807	1		2497	282	480	3259	52,50%
Dolichopodidae	836			1	1		2	0,03%
Empididae	831			_	1		1	0,02%
Ephydridae	844	I		1	l <u>.</u>	l .	1	0,02%
Limoniidae	757			8	21	55	84	1,35%
Psychodidae	783	I		4	3	1	8	0,13%
Stratiomyidae	824			1			1	0,02%
Tabanidae	837	I		1			1	0,02%
Tipulidae	753			69	18	2	89	1,43%

ODONATES								
ANISOPTERES	9787							
Gomphidae	679		Gomphus	1	1			
Gomphidae	682		Onychogomphus	1	2	5		
Gomphidae	678						10	0,16%
ZYGOPTERES	9785							
Calopterygidae	650		Calopteryx	2			2	0,03%
CRUSTACES								
AMPHIPODES	3114							
Gammaridae	892	2	Gammarus	650	97	179		
Gammaridae	887	2					926	14,92%
ISOPODES								
Asellidae	880	1		4	1	2	7	0,11%
DECAPODES								
Astacidae	872		Pacifastacus	4		2		
Astacidae	864						6	0,10%
AUTRES CRUSTACES								
Cladocères (présence)	3127			P	P		р	р
Copépodes (présence)	3206			P		P	р	р
Ostracodes (présence)	3170					P	р	р
MOLLUSQUES		2					•	
BIVALVES	3468							
Sphaeriidae	1043		Pisidium	2	2	5		
Sphaeriidae	1042			1		4	14	0,23%
GASTEROPODES								
Ancylidae	1028		Ancylus	4	25	76	105	1,69%
VERS ET AUTRES TAXONS								
TURBELLARIA	3326							
Dugesiidae	1055					2	2	0,03%
OLIGOCHETES	933	1		67	116	150	333	5,36%
NEMATHELMINTHES	3111				15	10	25	0,40%
HYDRACARIENS	906		Hydracarina	6	4	7	17	0,27%
HYDROZOAIRES	3168		Hydrozoa			1	1	0,02%
BRYOZOAIRES	1087		Bryozoa			P	р	p
Effectifs:				3525	905	1778	6208	1,00
Nombre de taxons				37	36	45		

Taxon surligné : non pris en compte dans le calcul de l'indice

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

→ INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLO	GIQUES -	L'ARON A COUBLANC (04410029)
l₂M₂ et état biologique	e	IBG-DCE
I ₂ M ₂	0,583	Nombre de taxons :
Etat biologique(Arrêté du 27/07/18)	Bon	Classe de variété (/14) :
Etat biologique(Allete du 27/07/18)	Воп	Groupe Faunistique Indicateur (/9) :
Nb taxons contributifs	53	Taxon Indicateur :
Métriques en EQR		Equivalent I.B.G.N. / 20 :
Indice de Shannon	0.169	•
ASPT	0.811	Taille du cours d'eau /HER /EQR
7.07 7	0,011	

Polyvoltinisme Ovoviviparité

Richesse taxonomique

0,811 0,582

0,618

0.667

IBG-DCE									
Nombre de taxons :	36								
Classe de variété (/14) :	10								
Groupe Faunistique Indicateur (/9) :	7								
Taxon Indicateur :	Leuctridae								
Equivalent I.B.G.N. / 20 :	16								
Taille du cours d'eau /HER /EQR	TP3								
Etat biologique (Arrêté du 27/07/2015)	Bon								
Robustesse (/20):	16								
Taxon indicateur robustesse	Goeridae								

OUTIL DIAGNOSTIQUE: probabilités des pressions potentielles Dégradation de l'habitat Qualité de l'eau Ripisylve Matière Organique Anthropisation Voies de Matières du BV communication Pesticides Phosphorées 0.4 Instabilité Matières hydrologique HAP Azotées Risque de colmatage Nitrates ■ 4410029 72 > 70% = " significatif "

M. Mourot
- HydrobiologisteCARSO
LSE HL

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 25/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7697

Nom du client : SYMISOA

Pontbrenon à Coublanc

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ec	hantillonnage		Analyse
Date et heure :	14/06/2022 de 10h30 à 11h30	Date :	29 et 30/03/2023
Organisme et Opérateur terrain :		Organisme et Opérateur labo :	P. Weber / CARSO

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le Pontbrenon à Coublanc (04410038).

→ RESULTATS DE L'ANALYSE

• <u>l₂M₂</u>:

Station	le Pontbrenon à Coublanc
I ₂ M ₂	0,538
Etat biologique*	Bon

^{*} suivant l'arrêté du 27 juillet 2018

• IBG-DCE:

	Le Pontbrenon à 0	Coublanc	
Nombre de taxons :	32		
Classe de variété (/14) :	9		
Groupe Faunistique Indicateur (/9):			
Taxon Indicateur :	Perlodidae		
Equivalent-IBGN /20 :	17		
Taille du cours d'eau /HER /EQR	TP3	0,88889	
Etat biologique *	Bon		

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

			Pontbrenon à Coublanc LSE2206-7697				
Commune :	Coublanc	Coordonnées (Lambert 93)	Amont	Aval			
Département :	Saône et Loire (71)	Х	798478	798454			
Hydro- écorégion :	HER 3 : Massif central Sud	Υ	6565168	6565189			

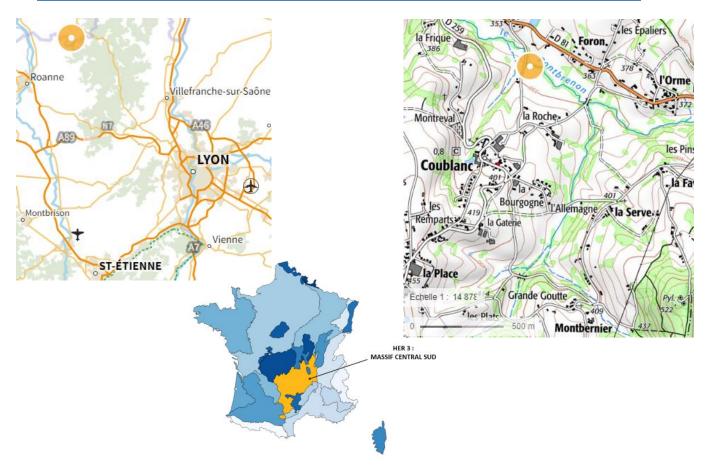


Figure 1 : Localisation de la station d'échantillonnage

- Photos de la station :

Amont de la station

Aval de la station

DESCRIPTION DE LA STATION PONTBRENON A COUBLANC LSE2206-7697

- Conditions environnementales

Accessibilité: -

Météo : temps sec ensoleillé **Ensoleillement** : Faible **Teinte de l'eau** : incolore

Hydrologie: Basses eaux Visibilité du fond: Bonne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite	
Lit majeur		Agricole	Agricole	
Porgos	nature	Naturelle	Naturelle	
Berges	pente	Pente moyenne	Pente moyenne	
Dinjoylyo	état	Dense, Clairsemée	Dense, Clairsemée	
Ripisylve	type	Herbacée, Arbustive, Arborescente	Herbacée, Arbustive, Arborescente	

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficultenon

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...):

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonicole	es (°C)	14,4	Très bon
eaux cyprinicole	es (°C)	14,4	Très bon
Oxygène dissous	(mg O2/L)	8,36	Très bon
Saturation en O2 disso	us (%)	84	Bon
Conductivité	(μS/cm)	153,6	*
рН	(unité de pH)	7,03	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 2,4 m Largeur plein bord Lpb:3 m

Longueur de la station : 40 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 50% Plat lentique, 30% Plat courant, 20% Radier,

→ GRILLE D'ECHANTILLONNAGE PONTBRENON A COUBLANC LSE2206-7697

Recouvrement of	Recouvrement des substrats			<u>Classes de vitesse</u>							
(surface relative					Rapide ≥ 75 cm/s	Moyenne 25 ≤ V < 75 cm/s		Lente 5 ≤ V < 25 cm/s		Nulle V < 5 cm/s	
en fonction des cla	sses	de vites	se	V	2 /5 cm/s N6	25 ≤	N5	5≥	N3	V	N1
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev
Bryophytes	S1										
Spermaphytes immergés (hydrophytes)	S2										
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3	1	М							+	A1
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	1	М					++	A2	+	
Sédiments minéraux de grande taille, pierres- galets (25 à 250 mm)	S24	76	D			++	B8 C11	+++	B5 C10 C12	+	C9
Blocs facilement déplaçables (>250 mm)	S30										
Graviers (2,5 à 25 mm)	S9	5	D					+		++	B6
Spermaphytes émergents (hélophytes)	S10	1	М			+	A3				
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11										
Sables (< 2 mm) - Limons	S25	15	D					+		++	В7
Algues - bactéries et champignons filamenteux	S18										
Surfaces uniformes dures naturelles ou artificielles	S29	1	М					+	A4		

Total 100

- Description des prélèvements élémentaires

N°	Phase		Substrat		vitesse	Matériel utilisé	Hauteur d'eau (cm)	Colmata (nature	e /	codes : Intensité 0 : 0%
1	Α	S3	litières	N1	nulle	Surber	22	-	-	1 : 1-20% 2 : 21-40%
2	Α	S28	racines-branchages	N3	lente	Surber	20	-	-	3 : 41-60%
3	Α	S10	hélophytes	N5	moyenne	Surber	7	-	-	4 : 61-80% 5 : 81-100%
4	Α	S29	surfaces uniformes	N3	lente	Surber	7	-	-	
5	В	S24	pierres	N3	lente	Surber	6	-	-	
6	В	S9	graviers	N1	nulle	Surber	2	-	-	
7	В	S25	sables-limons	N1	nulle	Surber	15	-	-	
8	В	S24	pierres	N5	moyenne	Surber	5	-	-	
9	С	S24	pierres	N1	nulle	Surber	12	-	-	
10	С	S24	pierres	N3	lente	Surber	4	-	-	
11	С	S24	pierres	N5	moyenne	Surber	5	-	-	
12	С	S24	pierres	N3	lente	Surber	18	-	-	

Genre

R

A

C

Effectif

Abondance

0.02%

1,19%

0,23%

0,43%

0,02%

0,02%

41,52%

0,72%

0.02%

2,95%

0,40%

2,10%

0,02%

1

56

11

20

1

1953

34

1

139

19

99

18

4

4

3

14

1

418

3

1

76

4

4

→ LISTE FAUNISTIQUE PONTBRENON A COUBLANC LSE2206-7697

GI

N°enregistrement : LSE2206-7696 Cours d'eau : Pontbrenon Liste faunistique : Date d'échantillonnage : 14/06/2022

code

527

620

618

623

622

614

604

608

607

635

634

819

807

793

844

757

783

801

753

2

2

2

2

1

TAXONS

sandre relative total **PLECOPTERES** Chloroperlidae 170 9 Chloroperla 2 1 Chloroperlidae 169 9 0,06% 3 Leuctridae 33830 7 Leuctra geniculata 2 28 97 3,04% Leuctridae 66 7 4 12 143 Perlodidae 140 9 Isoperla 3 3 Perlodidae q 0.13% 127 6 **TRICHOPTERES** Hydropsychidae 212 3 Hydropsyche 1 2 1 Hydrops ychidae 211 3 0.09% 311 4 Leptoceridae Athripsodes 1 Leptoceridae 310 4 0,02% Limnephilidae 3163 3 SF Limnephilinae 1 4 3 0,11% Limnephilidae 276 5 224 4 Polycentropodidae Cyrnus 6 Polycentropodidae 231 4 2 Polycentropus Polycentropodidae 223 4 8 0,17% Psychomyiidae 241 4 1 Lype Psychomyiidae 238 4 0,02% Rhyacophilidae 183 4 Rhyacophila lato sensu 2 6 0 0,19% **EPHEMEROPTERES** 2 Baetidae 364 Baetis 250 254 206 Raetidae 2 363 710 15,09% Ephemerellidae 450 3 Ephemerella 28 27 58 Ephemerellidae 449 3 113 2,40% Ephemeridae 502 6 Ephemera 6 18 24 0,51% 5 Heptageniidae 421 Ecdyonurus 2 8 14 5 Heptageniidae 3181 Electrogena 3 Heptageniidae 404 5 Rhithrogena 17 43 Heptageniidae 399 5 2 7 97 2,06% Leptophlebiidae 491 7 Habrophlebia 3 Leptophlebiidae 473 7 61 12 74 150 3,19% HETEROPTERES 0,11% Hydrometridae 740 Hydrometra2 3 5 **COLEOPTERES** Dytiscidae 2394 SF Laccophilinae 1

Dupophilus

Elmis

Limnius

Oulimnius

Helophorus

Hydraena

Cyphon

1

2

1

11

2

1103

31

7

12

87

21

2

4

432

56

3

8

Dytiscidae

Elmidae

Elmidae

Elmidae

Elmidae

Elmidae

Helophoridae

Hydraenidae

Hydraenidae

Ceratopogonidae

Chironomidae

DIPTERES

Scirtidae

Scirtidae

Dixidae

Ephydridae

Limoniidae

Psychodidae

Simuliidae

Tipulidae

CARSO-LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

MEGALOPTERES								
Sialidae	704		Sialis	9	5	4	18	0,38%
CRUSTACES								
AMPHIPODES	3114							
Gammaridae	892	2	Gammarus	185	123	164		
Gammaridae	887	2					472	10,03%
ISOPODES								
Asellidae	880	1		10	1	2	13	0,28%
DECAPODES								
Astacidae	872		Pacifastacus	1	1			
Astacidae	864						2	0,04%
AUTRES CRUSTACES								
Cladocères (présence)	3127				P		р	р
Copépodes (présence)	3206			P	P	P	p	р
Ostracodes (présence)	3170			P	P	P	р	р
MOLLUS QUES		2						
BIVALVES	3468							
Sphaeriidae	1043		Pisidium	6	16	3		
Sphaeriidae	1044		Sphaerium			3		
Sphaeriidae	1042			5	15		48	1,02%
VERS ET AUTRES TAXONS								
OLIGOCHETES	933	1		130	125	187	442	9,40%
NEMATHELMINTHES	3111				6	1	7	0,15%
HYDRACARIENS	906		Hydracarina	36	22	28	86	1,83%
HYDROZOAIRES	3168		Hydrozoa		1		1	0,02%
Effectifs :				2012	1214	1478	4704	1,00

Nombre de taxons 37 33 39

Taxon surligné : non pris en compte dans le calcul de l'indice

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

→ INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLOGIQUES – LE PONTBRENON A COUBLANC (04410038)

I₂M₂ et état biologique					
I_2M_2	0,538				
Etat biologique(Arrêté du 27/07/18)	Bon				
Nb taxons contributifs	48				
Métriques en EQR					
Indice de Shannon	0,399				
ASPT	0,702				
Polyvoltinisme	0,485				
Ovoviviparité	0,548				
Richesse taxonomique	0,524				

IBG-DCE							
Nombre de taxons :	32						
Classe de variété (/14) :	9						
Groupe Faunistique Indicateur (/9) :	9						
Taxon Indicateur :	Perlodidae						
Equivalent I.B.G.N. / 20 :	17						
Taille du cours d'eau /HER /EQR	TP3						
Etat biologique (Arrêté du 27/07/2015)	Bon						
Robustesse (/20):	15						
Taxon indicateur robustesse	Leuctridae						

OUTIL DIAGNOSTIQUE: probabilités des pressions potentielles Dégradation de l'habitat Qualité de l'eau Ripisylve Matière Organique Voies de Anthropisation Matières du BV communication Pesticides Phosphorées 0.4 Instabilité Urbanisation Matières hy drologique HAP Azotées Risque de colmatage Nitrates

M. Mourot
- HydrobiologisteCARSO

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 26/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7687

Nom du client : SYMISOA

Ruisseau des Equetteries

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ec	hantillonnage		Analyse
Date et heure :	14/06/2022 de 14h50 à 16h20	Date :	Du 10 au 13/03/2023
Organisme et Opérateur terrain :		Organisme et Opérateur labo :	P. Weber / CARSO

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le ruisseau des Equetteries à Charlieu (04015160).

RESULTATS DE L'ANALYSE

• I_2M_2 :

Station	Le Ruisseau des Equetteries à Charlieu
l₂M₂	0,316
Etat biologique*	Moyen

^{*} suivant l'arrêté du 27 juillet 2018

• IBG-DCE:

	Le Ruisseau des		
	Equetteries à Charlieu		
Nombre de taxons :	26		
Classe de variété (/14) :	8		
Groupe Faunistique Indicateur (/9) :	7		
Taxon Indicateur :	Leptophlebiidae		
Equivalent-IBGN /20 :	14		
Taille du cours d'eau /HER /EQR	TP21 0,72222		
Etat biologique *	Moyen		

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

			Ruisseau des Equetteries LSE2206-7687			
Commune:	Charlieu	Coordonnées (Lambert 93)	Amont	Aval		
Département :	Loire (42)	Х	791921	791936		
Hydro- écorégion :	HER 21 : Massif central Nord	Y	6564337	6564227		

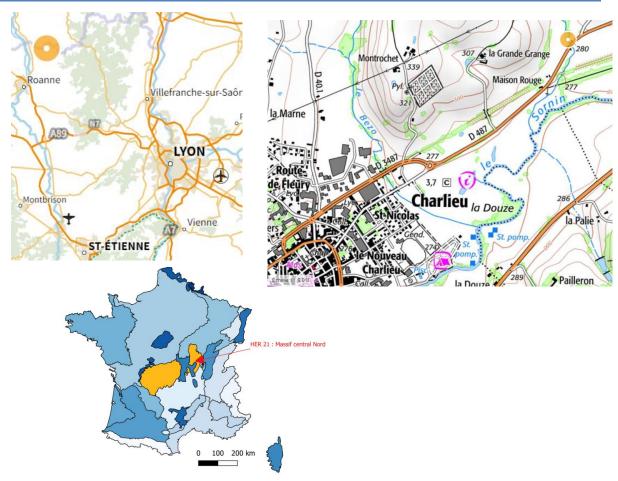


Figure 1 : Localisation de la station d'échantillonnage

- Photos de la station :

Amont de la station

Aval de la station

→ DESCRIPTION DE LA STATION LE RUISSEAU DES EQUETTERIES LSE2206-7687

- Conditions environnementales

Accessibilité: -

Météo : temps sec ensoleillé Ensoleillement : Faible Teinte de l'eau : marron clair

Hydrologie : Basses eaux Visibilité du fond : Moyenne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite
Lit majeur		Prairie	Prairie
Porgo	nature	Naturelle	Naturelle
Berges	pente	Pente moyenne	Pente moyenne
Pinicylyo	état	Clairsemée	Clairsemée
Ripisylve	type	Herbacée, Arbustive, Arborescente	Herbacée, Arbustive, Arborescente

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficultinon

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...):

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonicole	s (°C)	19,2	Très bon
eaux cyprinicole	s (°C)	19,2	Très bon
Oxygène dissous	(mg O2/L)	5,46	Moyen
Saturation en O2 dissou	s (%)	60,6	Moyen
Conductivité	(μS/cm)	219	*
рН	(unité de pH)	7,2	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 2,9 m Largeur plein bord Lpb:4,1 m

Longueur de la station : 74 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 90% Plat lentique, 10% Radier,

→ GRILLE D'ECHANTILLONNAGE LE RUISSEAU DES EQUETTERIES LSE2206-7687

Recouvrement des substrats			Classes de vitesse								
(surface relative sur la station)					Rapide	Moyenne			Lente	Nulle	
en fonction des cla	en fonction des classes de vitesse			V	≥ 75 cm/s N6	25 ≤	V < 75 cm/s N5	5≤	V < 25 cm/s N3	V < 5 cm/s N1	
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev
Bryophytes	S1	1	М							+	A1
Spermaphytes immergés (hydrophytes)	S2										
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3	2	М							+	A2
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	5	D			+		++		+++	B5
Sédiments minéraux de grande taille, pierres-galets (25 à 250 mm)	S24	77	D			+	C9	+++	B6 C10	++	B8 C11
Blocs facilement déplaçables (>250 mm)	S30	1	М							+	A3
Graviers (2,5 à 25 mm)	S9	8	D							+	В7
Spermaphytes émergents (hélophytes)	S10	1	М							+	A4
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11										
Sables (< 2 mm) - Limons	S25	3	М							+	
Algues - bactéries et champignons filamenteux	S18										
Surfaces uniformes dures naturelles ou artificielles	S29	2	М							+	

Total 100 %

- Description des prélèvements élémentaires

N°	Phase	Substrat		,	vitesse	Matériel utilisé	Hauteur d'eau (cm)	Colmata (nature	1	codes : Intensité 0 : 0%
1	Α	S1	bryophytes	N1	nulle	Surber	8	-	-	1 : 1-20%
2	Α	S3	litières	N1	nulle	Surber	18	-	-	2 : 21-40% 3 : 41-60%
3	Α	S30	blocs	N1	nulle	Surber	20	-	-	4 : 61-80% 5 : 81-100%
4	Α	S10	hélophytes	N1	nulle	Surber	20	-	-	
5	В	S28	racines-branchages	N1	nulle	Surber	20	-	-	
6	В	S24	pierres	N3	lente	Surber	6	-	-	
7	В	S9	graviers	N1	nulle	Surber	7	-	-	
8	В	S24	pierres	N1	nulle	Surber	2	-	-	
9	С	S24	pierres	N5	moyenne	Surber	2	-	-	
10	С	S24	pierres	N3	lente	Surber	12	-	-	
11	С	S24	pierres	N1	nulle	Surber	28	-	-	
12	С	S24	pierres	N3	lente	Surber	11	-	-	

→ LISTE FAUNISTIQUE LERUISSEAU DES EQUETTERIES LSE2206-7687

N°enregistrement: LSE2206-787 Cours d'eau: Rau des Equetteries Liste faunistique: Date d'échantillonnage: 14/06/2022

Liste faunistique :	Date d'échant	illonnage :	14/06/2022					
TAXONS	code	GI	Genre	A	В	C	Effectif	Abondance
	sandre						total	relative
PLECOPTERES							•	
Leuctridae	33830	7	Leuctra geniculata		1			
Leuctridae	69	7	Leuctra			1		
Leuctridae	66	7			1		3	0,13%
TRICHOPTERES								
Glossosomatidae	189	7			1		1	0,04%
Goeridae	286	7			1		1	0,04%
Hydropsychidae	212	3	Hydropsyche			1		
Hydropsychidae	211	3					1	0,04%
Leptoceridae	312	4	Mystacides	1	3			
Leptoceridae	310	4					4	0,18%
Psychomyiidae	241	4	Lype		1			
Psychomyiidae	238	4					1	0,04%
EPHEMEROPTERES								
Baetidae	364	2	Baetis			28		
Baetidae	383	2	Centroptilum	2				
Baetidae	390	2	Procloeon	5		1		
Baetidae	363	2		1		1	38	1,67%
Ephemerellidae	450	3	Ephemerella	5	9	46		
Ephemerellidae	449	3					60	2,64%
Ephemeridae	502	6	Ephemera			1	1	0,04%
Heptageniidae	421	5	Ecdyonurus		7	46		
Heptageniidae	3181	5	Electrogena	3	2			
Heptageniidae	404	5	Rhithrogena		1			
Heptageniidae	399	5				1	60	2,64%
Leptophlebiidae	491	7	Habrophlebia			1		
Leptophlebiidae	473	7		4	7	7	19	0,84%
HETEROPTERES								
Corixidae	719		Micronecta		2			
Corixidae	709						2	0,09%
COLEOPTERES							•	
Elmidae	619	2	Esolus			1		
Elmidae	614	2					1	0,04%
Hydraenidae	608		Hydraena	1		2		
Hydraenidae	607						3	0,13%
DIPTERES								
Chironomidae	807	1		516	213	305	1034	45,55%
Limoniidae	757				3	2	5	0,22%
ODONATES							•	
ANISOPTERES	9787							
Aeshnidae	675		Anax	1				
Aeshnidae	669						1	0,04%
ZYGOPTERES	9785							
Lestidae	654		Sympecma		1			
Lestidae	653						1	0,04%
MEGALOPTERES							•	
Sialidae	704		Sialis		1	1	2	0,09%

CARSO-LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

CRUSTACES								
AMPHIPODES	3114							
Gammaridae	892	2	Gammarus	132	373	507		
Gammaridae	887	2					1012	18,17%
ISOPODES								
Asellidae	880	1		14		1	15	0,27%
AUTRES CRUSTACES							•	
Cladocères (présence)	3127			P	P	P	p	р
Copépodes (présence)	3206			P	P		p	р
Ostracodes (présence)	3170				P		p	р
MOLLUS QUES		2						
BIVALVES	3468						•	
Sphaeriidae	1043		Pisidium	10	5	3		
Sphaeriidae	1042			2	2	3	25	0,45%
GASTEROPODES								
Ancylidae	1028		Ancylus	41	34	116	191	3,43%
Hydrobiidae	978		Potamopyrgus	39	13	76		
Hydrobiidae	973						128	2,30%
Lymnaeidae	1004		Radix	9	2			
Lymnaeidae	998						11	0,20%
Valvatidae	972		Valvata		1		1	0,02 %
VERS ET AUTRES TAXONS								
ACHETES		1						
Erpobdellidae	928			2	4	6	12	0,22%
Glossiphoniidae	908			8	4	1	13	0,23%
Piscicolidae	918					2	2	0,04%
TURBELLARIA	3326						•	
Dugesiidae	1055			8	4	15	27	0,48%
OLIGOCHETES	933	1		457	560	96	1113	19,99%
NEMATHELMINTHES	3111				2		2	0,04%
HYDRACARIENS	906		Hydracarina	5	3	9	17	0,31%
HYDROZOAIRES	3168		Hydrozoa	6		9	15	0,27%
Effectifs:				1673	2338	1558	5569	1,00

37 Nombre de taxons

Taxon surligné : non pris en compte dans le calcul de l'indice

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

→ INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLOGIQUES - LE RAU DES EQUETTERIES A CHARLIEU (04015160)

l₂M₂ et état biologique					
I ₂ M ₂	0,316				
Etat biologique(Arrêté du 27/07/18)	Moyen				
Nb taxons contributifs	38				
Métriques en EQR					
Indice de Shannon	0,064				
ASPT	0,694				
Polyvoltinisme	0,118				
Ovoviviparité	0,343				
Richesse taxonomique	0,306				

IBG-DCE								
Nombre de taxons :	26							
Classe de variété (/14) :	8							
Groupe Faunistique Indicateur (/9) :	7							
Taxon Indicateur :	Leptophlebiidae							
Equivalent I.B.G.N. / 20 :	14							
Taille du cours d'eau /HER /EQR	TP21							
Etat biologique (Arrêté du 27/07/2015)	Moyen							
Robustesse (/20):	12							
Taxon indicateur robustesse	Heptageniidae							

OUTIL DIAGNOSTIQUE: probabilités des pressions potentielles Dégradation de l'habitat Qualité de l'eau Ripisylve Matière Organique Anthropisation Voies de Matières du BV communication Pesticides Phosphorées Instabilité Urbanisation Matières hydrologique HAP Azotées Risque de colmatage Nitrates

M. Mourot
- Hydrobiologiste-

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 26/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7688

Nom du client : SYMISOA

Le Bezo à Charlieu

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ec	hantillonnage	Analyse		
Date et heure :	14/06/2022 de 16h30 à 17h30	Date :	14 et 15/03/2023	
Organisme et Opérateur terrain :		Organisme et Opérateur labo :	P. Weber / CARSO	

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le Bezo à Charlieu (04015190).

→ RESULTATS DE L'ANALYSE

• <u>l₂M₂</u>:

Station	Le Bezo à Charlieu
I ₂ M ₂	0,464
Etat biologique*	Bon

^{*} suivant l'arrêté du 27 juillet 2018

• IBG-DCE:

	LE Bezo à Ch	arlieu	
Nombre de taxons :	41		
Classe de variété (/14) :	12		
Groupe Faunistique Indicateur (/9) :	7		
Taxon Indicateur :	Leuctridae		
Equivalent-IBGN /20 :	18		
Taille du cours d'eau /HER /EQR	TP21	0,94444	
Etat biologique *	Très bon		

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

		Le Bezeo à Charlieu LSE2206-7688				
Commune:	Charlieu	Coordonnées (Lambert 93)	Amont	Aval		
Département :	Loire (42)	Х	791097	791219		
Hydro- écorégion :	HER 21 : Massif central Nord	Y	6563157	6563134		

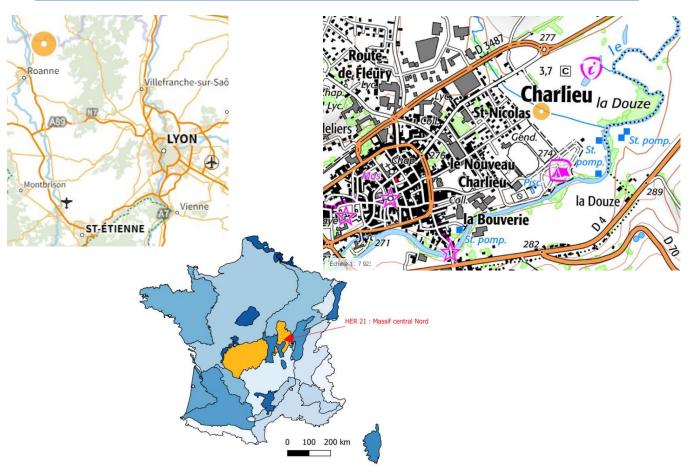


Figure 1 : Localisation de la station d'échantillonnage

- Photos de la station :

Amont de la station

Aval de la station

→ DESCRIPTION DE LA STATION LE BEZO A CHARLIEU LSE2206-7688

- Conditions environnementales

Accessibilité: -

Météo : temps sec ensoleillé Ensoleillement : Moyen Teinte de l'eau : incolore

Hydrologie : Basses eaux **Visibilité du fond :** Bonne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite
Lit majeur		Prairie	Prairie
Parasa	nature	Naturelle	Naturelle et artificielle
Berges	pente	Pente faible	Pente moyenne
Pinicylyo	état	Dense	Dense
Ripisylve	type	Herbacée	Herbacée

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficultenon

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...):

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau	ı		
eaux salmonico	oles (°C)	26,6	Médiocre
eaux cyprinico	oles (°C)	26,6	Moyen
Oxygène dissous	(mg O2/L)	8,46	Très bon
Saturation en O2 diss	sous (%)	108,2	Très bon
Conductivité	(μS/cm)	273	*
pH	(unité de pH)	7,72	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 6,1 m Largeur plein bord Lpb: 7,3 m

Longueur de la station : 131 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 60% Plat lentique, 10% Plat courant, 30% Radier,

→ GRILLE D'ECHANTILLONNAGE LE BEZO A CHARLIEU LSE2206-7688

Recouvrement des substrats			Classes de vitesse								
	(surface relative sur la station) en fonction des classes de vitesse				Rapide ≥ 75 cm/s N6		Moyenne V < 75 cm/s N5	5≤	Lente V < 25 cm/s N3	V	Nulle < 5 cm/s N1
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev
Bryophytes	S1										
Spermaphytes immergés (hydrophytes)	S2	1	М					+	A1		
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3										
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28										
Sédiments minéraux de grande taille, pierresgalets (25 à 250 mm)	S24	70	D			++	B8 C11	+++	B5 C10 C12	+	C9
Blocs facilement déplaçables (>250 mm)	S30	1	М					+	A2		
Graviers (2,5 à 25 mm)	S9										
Spermaphytes émergents (hélophytes)	S10	2	М					++	A3	+	
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11										
Sables (< 2 mm) - Limons	S25	5	D					++	В6	+	
Algues - bactéries et champignons filamenteux	S18	20	D					+++	B7	++	
Surfaces uniformes dures naturelles ou artificielles	S29	1	M					++	A4	+	

Total 100 %

- Description des prélèvements élémentaires

N°	Phase	Substrat		Substrat vitesse		Matériel utilisé	Hauteur d'eau (cm)	Colmat (natur	e /	codes : Intensité 0 : 0%
1	Α	S2	hydrophytes	N3	lente	Surber	8	-	-	1 : 1-20% 2 : 21-40%
2	Α	S30	blocs	N3	lente	Surber	10	-	-	3 : 41-60%
3	Α	S10	hélophytes	N3	lente	Surber	5	-	-	4 : 61-80% 5 : 81-100%
4	Α	S29	surfaces uniformes	N3	lente	Surber	20	-	-	
5	В	S24	pierres	N3	lente	Surber	10	-	-	
6	В	S25	sables-limons	N3	lente	Surber	10	-	-	
7	В	S18	algues-champignons	N3	lente	Surber	3	-	-	
8	В	S24	pierres	N5	moyenne	Surber	5	-	-	
9	С	S24	pierres	N1	nulle	Surber	2	-	-	
10	С	S24	pierres	N3	lente	Surber	10	-	-	
11	С	S24	pierres	N5	moyenne	Surber	8	-	-	
12	С	S24	pierres	N3	lente	Surber	5	-	-	

CARSO-LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

→ LISTE FAUNISTIQUE LE BEZO A CHARLIEU LSE2206-7688

 $N^{\circ}enregistrement: LSE2206-7688 \quad \quad Cours \; d'eau: \; \; Bezo$

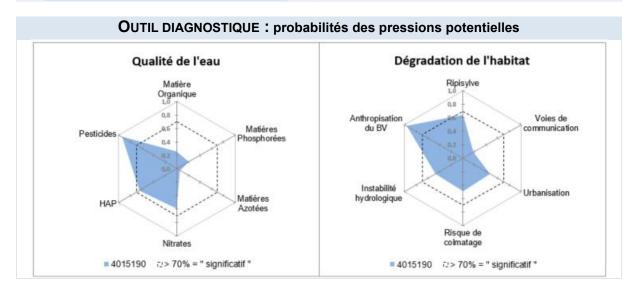
Liste faunistique : Date d'échantillonnage : 14/06/2022

Liste faunistique :	Date d'échanti	llonnage : 1	14/06/2022					
TAXONS	code	GI	Genre	A	B	C	Effectif	Abondance
	sandre		1		!		total	relative
PLECOPTERES								
Leuctridae	33830	7	Leuctra geniculata		7	31	•	
Leuctridae	66	7	Leucira geniculala	1	,	31	38	0,68%
	00	,						0,00 /6
TRICHOPTERES	207		G				•	
Goeridae	287	7	Goera		!	4		
Goeridae	286	7		1	!		5	0,09%
Hydropsychidae	212	3	Hydropsyche	4	42	184		l
Hydropsychidae	211	3			!		230	4,13%
Hydroptilidae	200	5	Hydroptila	4	3	2		l
Hydroptilidae	193	5			!		9	0,16%
Leptoceridae	311	4	Athripsodes	1	!			l
Leptoceridae	312	4	Mystacides	1	2	1		l
Leptoceridae	310	4	,				5	0,09%
Limnephilidae	3163	3	SF Limnephilinae	6	1	4		0,00 %
			31 Limnephilinae	U	1	7	11	0.20%
Limnephilidae	276	3			!		11	0,20%
Polycentropodidae	224	4	Cyrnus	2	_	_		1 !
Polycentropodidae	231	4	Polycentropus	1	5	2	[1 1
Polycentropodidae	223	4		1	[9	0,16%
Psychomyiidae	239	4	Psychomyia	1	12	65		1 !
Psychomyiidae	245	4	Tinodes	7	4	6	[1 1
Psychomyiidae	238	4			!		95	1,71%
Rhyacophilidae	183	4	Rhyacophila lato sensu	1	1	7	8	0,14%
EPHEMEROPTERES			Januar III a a a a a a a a a a a a a a a a a					,
Baetidae	364	2	Baetis	6	11	92	•	
		2			11	92		l
Baetidae	387		Cloeon	13	!		1.41	2.52.64
Baetidae	363	2		19	_ '		141	2,53%
Caenidae	457	2	Caenis	3	3	4		l
Caenidae	456	2			!		10	0,18%
Ephemerellidae	450	3	Ephemerella	2	2	5	ļ.	l
Ephemerellidae	449	3			!		9	0,16%
Ephemeridae	502	6	Ephemera		!	1	1	0,02%
Heptageniidae	421	5	Ecdyonurus	1	2	14		ì
Heptageniidae	399	5	,		1		18	0,32%
Leptophlebiidae	473	7		1	1	2	4	0,07%
HETEROPTERES	415			1	1			0,07 76
Corixidae	710		Management	7	10	7	•	
	719		Micronecta	7	18	1		
Corixidae	709			1	1		26	0,47 %
Nepidae	725			2			2	0,04%
COLEOPTERES							•	
Dytiscidae	2394		SF Laccophilinae	42				1
Dytiscidae	527	1		1	I		43	0,77%
Elmidae	618	2	Elmis	1	2	5		
Elmidae	619	2	Esolus	6	34	90	ļ ļ	
Elmidae	623	2	Limnius	-	1	2	[1 1
Elmidae	622	2	Oulimnius	1				1 !
		2 2	Jununus	1	I		1.41	2520
Emidae	614	2	77 7	_	I		141	2,53%
Hydrochidae	606	1	Hydrochus	2		ĺ	2	0,04%
Hydrophilidae	2517	1	SF Hydrophilinae	21		ĺ		
Hydrophilidae	571						21	0,38%
DIPTERES							•	
Chironomidae	807	1		764	1176	190	2130	38,25%
Limoniidae	757	1		1	2	1	4	0,07%
Tipulidae	753	1	1	1	1		1	0,02%
ODONATES								. ,
ANISOPTERES	9787			11		1	12	
ZYGOPTERES	9787	1		1.1		1		
		1		2	I			0.05
Coenagrionidae	658	1	77	3	I		3	0,05%
Platycnemididae	657		Platycnemis	3			3	0,05%
MEGALOPTERES								
Sialidae	704		Sialis	4			4	0,07%

CARSO-LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

CRUSTACES								
AMPHIPODES	3114							
Gammaridae	892	2	Gammarus	132	373	507		
Gammaridae	887	2					1012	18,17%
ISOPODES								
Asellidae	880	1		14		1	15	0,27%
AUTRES CRUSTACES								
Cladocères (présence)	3127			P	P	P	р	р
Copépodes (présence)	3206			P	P		р	р
Ostracodes (présence)	3170				P		р	р
MOLLUSQUES		2						
BIVALVES	3468							
Sphaeriidae	1043		Pisidium	10	5	3		
Sphaeriidae	1042			2	2	3	25	0,45%
GASTEROPODES								
Ancylidae	1028		Ancylus	41	34	116	191	3,43%
Hydrobiidae	978		Potamopyrgus	39	13	76		
Hydrobiidae	973						128	2,30%
Lymnaeidae	1004		Radix	9	2			
Lymnaeidae	998						11	0,20%
Valvatidae	972		Valvata		1		1	0,02%
VERS ET AUTRES TAXONS								
ACHETES		1						
Erpobdellidae	928			2	4	6	12	0,22%
Glossiphoniidae	908			8	4	1	13	0,23%
Piscicolidae	918					2	2	0,04%
TURBELLARIA	3326							
Dugesiidae	1055			8	4	15	27	0,48%
OLIGOCHETES	933	1		457	560	96	1113	19,99%
NEMATHELMINTHES	3111				2		2	0,04%
HYDRA CARIENS	906		Hydracarina	5	3	9	17	0,31%
HYDROZOAIRES	3168		Hydrozoa	6		9	15	0,27%
Effectifs:				1673	2338	1558	5569	1,00
Nombre de taxons				45	38	37		


Taxon surligné : non pris en compte dans le calcul de l'indice Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLO	GIQUES -	LE BEZO A CHARLIEU (04015190)
I₂M₂ et état biologique		IBG-DCE
I_2M_2	0,464	Nombre de taxons :
itat biologique(Arrêté du 27/07/18)	Bon	Classe de variété (/14) :
3 , \		Groupe Faunistique Indicateur (/9) :
lb taxons contributifs	54	Taxon Indicateur :
létriques en EQR		Equivalent I.B.G.N. / 20 :
ndice de Shannon	0,318	Taille du cours d'eau /HER /EQR
SPT	0,509	
Polyvoltinisme	0,332	Etat biologique (Arrêté du 27/07/2015)
Ovovivinarité	0.464	Robustesse (/20):

Richesse taxonomique

IBG-DCE	
Nombre de taxons :	41
Classe de variété (/14) :	12
Groupe Faunistique Indicateur (/9) :	7
Taxon Indicateur :	Leuctridae
Equivalent I.B.G.N. / 20:	18
Taille du cours d'eau /HER /EQR	TP21
Etat biologique (Arrêté du 27/07/2015)	Très bon
Robustesse (/20):	15
Taxon indicateur robustesse	Hydroptilidae

0.750

M. Mourot - Hydrobiologiste-

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 23/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7703

Nom du client : SYMISOA

Chandonnet à Chandon - 04410060

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ed	chantillonnage	Analyse		
Date et heure :	13/06/2022 de 16h à 17h15	Date :	Du 22 au 23/03/2023	
Organisme et Opérateur terrain :	H. Pichol & M. Lassau / CARSO	Organisme et Opérateur labo :	P. Weber / CARSO	

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le Chandonnet à Chandon (04410060).

→ RESULTATS DE L'ANALYSE

• I₂M₂:

Station	le Chandonnet à Chandon
I_2M_2	0,577
Etat biologique*	Bon

^{*} suivant l'arrêté du 27 juillet 2018

• IBG-DCE:

	Le Chandonnet à	Chandon		
Nombre de taxons :	33			
Classe de variété (/14) :	10			
Groupe Faunistique Indicateur (/9) :	teur (/9) : 7			
Taxon Indicateur :	Leuctrida	Э		
Equivalent-IBGN /20 :	16			
Taille du cours d'eau /HER /EQR	TP3	0,83333		
Etat biologique *	Bon			

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

			Chandonnet à Chandon LSE2206-7703			
Commune :	Chandon	Coordonnées (Lambert 93)	Amont	Aval		
Département :	Loire (42)	Х	793492	793436		
Hydro- écorégion :	HER 3 : Massif central Sud	Υ	6561966	6561921		

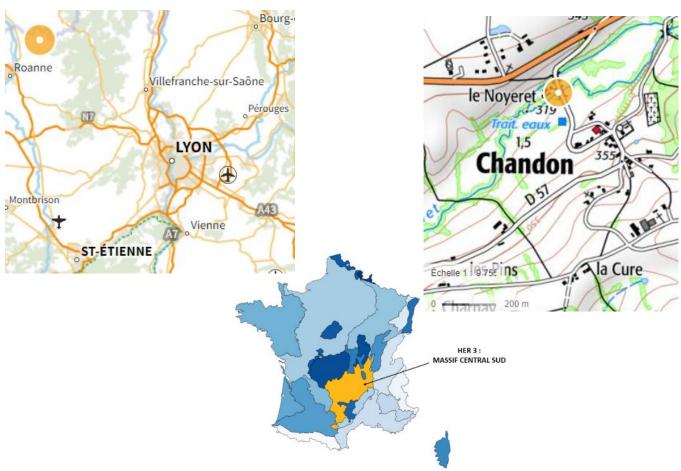


Figure 1 : Localisation de la station d'échantillonnage

- Photos de la station :

Amont de la station

Aval de la station

→ DESCRIPTION DE LA STATION CHANDONNET A CHANDON LSE2206-7703

- Conditions environnementales

Accessibilité: -

Météo : temps sec ensoleillé Ensoleillement : Moyen Teinte de l'eau : incolore

Hydrologie: Basses eaux Visibilité du fond: Bonne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite
Lit majeur		Prairie	Prairie
Borgos	nature	Naturelle	Naturelle
Berges	pente	Pente moyenne	Pente moyenne
Pinicylyo	état	Dense, Clairsemée	Dense, Clairsemée
Ripisylve	type	Herbacée, Arbustive	Herbacée, Arbustive

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficultenon

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...):

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonicol	es (°C)	19,9	Très bon
eaux cyprinicol	es (°C)	19,9	Très bon
Oxygène dissous	(mg O2/L)	8,18	Très bon
Saturation en O2 disso	ous (%)	92,4	Très bon
Conductivité	(μS/cm)	253	*
pH	(unité de pH)	8,092	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 2,5 m Largeur plein bord Lpb:5 m

Longueur de la station : 90 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 80% Plat lentique, 20% Radier,

→ GRILLE D'ECHANTILLONNAGE CHANDONNET A CHANDON LSE2206-7703

Recouvrement des substrats			Classes de vitesse								
(surface relative	(surface relative sur la station) en fonction des classes de vitesse				Rapide ≥ 75 cm/s N6		Moyenne V < 75 cm/s N5	5≤	Lente V < 25 cm/s N3	V	Nulle < 5 cm/s N1
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev
Bryophytes	S1										
Spermaphytes immergés (hydrophytes)	S2										
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3	3	М					++	A1	+	
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	3	М					+	A2		
Sédiments minéraux de grande taille, pierresgalets (25 à 250 mm)	S24	65	D			++	B7 C11	+++	B5 C10 C12	+	C9
Blocs facilement déplaçables (>250 mm)	S30	1	М					+	А3		
Graviers (2,5 à 25 mm)	S9	25	D					+	B6 B8		
Spermaphytes émergents (hélophytes)	S10										
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11										
Sables (< 2 mm) - Limons	S25	2	М					+	A4		
Algues - bactéries et champignons filamenteux	S18										
Surfaces uniformes dures naturelles ou artificielles	S29	1	M					+			

Total 100 %

- Description des prélèvements élémentaires

N°	Phase		Substrat		vitesse	Matériel utilisé	Hauteur d'eau (cm)	Colmat (natur	e /	codes : Intensité 0 : 0%
1	Α	S3	litières	N3	lente	Surber	6	ı	-	1 : 1-20% 2 : 21-40%
2	Α	S28	racines-branchages	N3	lente	Surber	30	-		3:41-60%
3	Α	S30	blocs	N3	lente	Surber	4	-	1	4 : 61-80% 5 : 81-100%
4	Α	S25	sables-limons	N3	lente	Surber	6	-	-	
5	В	S24	pierres	N3	lente	Surber	5	-	-	
6	В	S9	graviers	N3	lente	Surber	10	-	-	
7	В	S24	pierres	N5	moyenne	Surber	12	-	-	
8	В	S9	graviers	N3	lente	Surber	20	-	-	
9	С	S24	pierres	N1	nulle	Surber	6	-	-	
10	С	S24	pierres	N3	lente	Surber	15	-	-	
11	С	S24	pierres	N5	moyenne	Surber	4	-	-	
12	С	S24	pierres	N3	lente	Surber	12	-	-	

→ LISTE FAUNISTIQUE CHANDONNET A CHANDON LSE2206-7703

N°enregistrement: LSE2206-7703 Cours d'eau: Chandonnet Liste faunistique: Date d'échantillonnage: 13/06/202

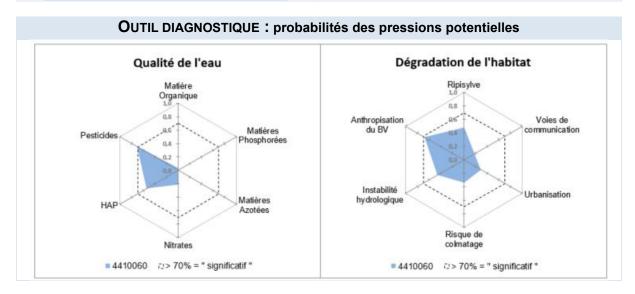
Liste faunistique :	Date d'échant	illonnage :	13/06/2022					
TAXONS	code	GI	Genre	A	В	C	Effectif	Abondance
	sandre						total	relative
PLECOPTERES							•	
Leuctridae	33830	7	Leuctra geniculata	3	3	2		
Leuctridae	69	7	Leuctra	12	10	36		
Leuctridae	66	7					66	1,37%
Nemouridae	26	6	Nemoura			1		
Nemouridae	20	6					1	0,02%
TRICHOPTERES							•	
Brachycentridae	268	8	Micrasema		1	4		
Brachycentridae	262	8					5	0,10%
Glossosomatidae	189	7				7	7	0,15%
Goeridae	286	7		1		1	2	0,04%
Hydropsychidae	212	3	Hydropsyche	8	28	23		
Hydropsychidae	211	3					59	1,22%
Leptoceridae	311	4	Athripsodes			3		
Leptoceridae	310	4					3	0,06%
Polycentropodidae	223	4		21	9	6	36	0,75%
Rhyacophilidae	183	4	Rhyacophila lato sensu	5		3	8	0,17%
EPHEMEROPTERES							•	
Baetidae	364	2	Baetis	39	62	70		
Baetidae	390	2	Procloeon		1			
Baetidae	363	2					172	3,57%
Caenidae	468	2	Brachycercus		1			
Caenidae	457	2	Caenis	1	2	3		
Caenidae	456	2					7	0,15%
Ephemerellidae	450	3	Ephemerella	16	5	34		
Ephemerellidae	449	3					55	1,14%
Ephemeridae	502	6	Ephemera	15	11	5	31	0,64%
Heptageniidae	421	5	Ecdyonurus	8	12	14		
Heptageniidae	3181	5	Electrogena	37	1			
Heptageniidae	404	5	Rhithrogena		12	24		
Heptageniidae	399	5		6			114	2,36%
Leptophlebiidae	491	7	Habrophlebia	6	4	2		
Leptophlebiidae	473	7		201	53	140	406	8,42%
HETEROPTERES								
Gerridae	735		Gerris	1			1	0,02%
COLEOPTERES								
Elmidae	620	2	Dupophilus	8	9	15		
Elmidae	618	2	Elmis	3				
Elmidae	619	2	Esolus	1	5	6		
Elmidae	623	2	Limnius	4	5	3		
Elmidae	622	2	Oulimnius			1		
Elmidae	625	2	Riolus	1		1		
Elmidae	614	2					62	1,29%
Hydraenidae	608		Hydraena	1	2	8		
Hydraenidae	607						11	0,23%
Hydrophilidae	2517		SF Hydrophilinae	1				
Hydrophilidae	571						1	0,02%

CARSO-LABORATOIRE SANTE ENVIRONNEMENT HYGIENE DE LYON

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

DIPTERES								
Ceratopogonidae	819			4	2		6	0,12%
Chironomidae	807	1		595	598	286	1479	30,66%
Dixidae	793				1		1	0,02%
Limoniidae	757			23	25	16	64	1,33%
Psychodidae	783				4		4	0,08%
Simuliidae	801			3	7	10	20	0,41%
ODONATES								
ANISOPTERES	9787							
Gomphidae	682		Onychogomphus	2	3	1		
Gomphidae	678						6	0,12%
ZYGOPTERES	9785							
Calopterygidae	650		Calopteryx	1			1	0,02%
MEGALOPTERES			1 3					
Sialidae	704		Sialis	3		6	9	0,19%
CRUSTACES								
AMPHIPODES	3114							
Gammaridae	892	2	Gammarus	1010	554	464		
Gammaridae	887	2					2028	42,04%
ISOPODES								,,
Asellidae	880	1		1		1	2	0,04%
DECAPODES		_						.,
Astacidae	872		Pacifastacus	5	3	4		
Astacidae	864		,				12	0,25%
AUTRES CRUSTACES								, ,
Copépodes (présence)	3206			P	P	P	р	р
Ostracodes (présence)	3170					P	p	p
MOLLUSQUES	2273	2						•
BIVALVES	3468							
Sphaeriidae	1043		Pisidium	4	1		-	
Sphaeriidae	1042		- 101	10		1	16	0,33%
GASTEROPODES								.,
Ancylidae	1028		Ancylus			2	2	0,04%
VERS ET AUTRES TAXONS								
TURBELLARIA	3326							
Planariidae	1061			1	4	3	8	0,17%
OLIGOCHETES	933	1		20	38	17	75	1,55%
NEMATHELMINTHES	3111					1	1	0,02%
HYDRACARIENS	906		Hydracarina	24	6	12	42	0,87%
NEMERTIENS (Prostomatidae)	3110		Prostoma		1	<u> </u>	1	0,02%
Effectifs:				2105	1483	1236	4824	1,00
Nombre de taxons				39	35	40		-,00

Taxon surligné : non pris en compte dans le calcul de l'indice


Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

→ INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLOGIQUES – LE CHANDONNET A CHANDON (04410060)

l₂M₂ et état biologique						
I ₂ M ₂	0,577					
Etat biologique(Arrêté du 27/07/18)	Bon					
Nb taxons contributifs	51					
Métriques en EQR						
Indice de Shannon	0,288					
ASPT	0,760					
Polyvoltinisme	0,561					
Ovoviviparité	0,621					
Richesse taxonomique	0,595					

IBG-DCE								
Nombre de taxons :	33							
Classe de variété (/14) :	10							
Groupe Faunistique Indicateur (/9) :	7							
Taxon Indicateur :	Leuctridae							
Equivalent I.B.G.N. / 20 :	16							
Taille du cours d'eau /HER /EQR	TP3							
Etat biologique (Arrêté du 27/07/2015)	Bon							
Robustesse (/20):	15							
Taxon indicateur robustesse	Leptophlebiidae							

M. Mourot
- HydrobiologisteCARSO

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 12/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7689

Nom du client : SYMISOA

Le Chandonnet à Pouilly-sous-Charlieu

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ec	hantillonnage	Analyse		
Date et heure :	15/06/2022 de 10h10 à 11h30	Date :	15 et 16/03/2023	
Organisme et Opérateur terrain :		Organisme et Opérateur labo :	P. Weber / CARSO	

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le Chandonnet à Pouilly-sous-Charlieu (04015299).

→ RESULTATS DE L'ANALYSE

<u>I₂M₂</u>:

Station	Le Chandonnet à Pouilly- sous-Charlieu	
I ₂ M ₂ Etat biologique*	0,415 Moven	
Liai biologique	WIOYEII	

^{*} suivant l'arrêté du 27 juillet 2018

• <u>IBG-DCE</u>:

	Le Chandonnet à Pouilly-	
	sous-Charlieu	
Nombre de taxons :	23	
Classe de variété (/14) :	7	
Groupe Faunistique Indicateur (/9) :	7	
Taxon Indicateur :	Glossosomatidae	
Equivalent-IBGN /20 :	13	
Taille du cours d'eau /HER /EQR	TP3	0,66667
Etat biologique *	Moyen	

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

			Chandonnet Pouilly sous Charlieu LSE2206-7689				
Commune :	Pouilly sous Charlieu	Coordonnées (Lambert 93)	Amont	Aval			
Département :	Loire (42)	Х	788868	788874			
Hydro- écorégion :	HER 17 : Dépression sédimentaire	Υ	6561661	6561726			

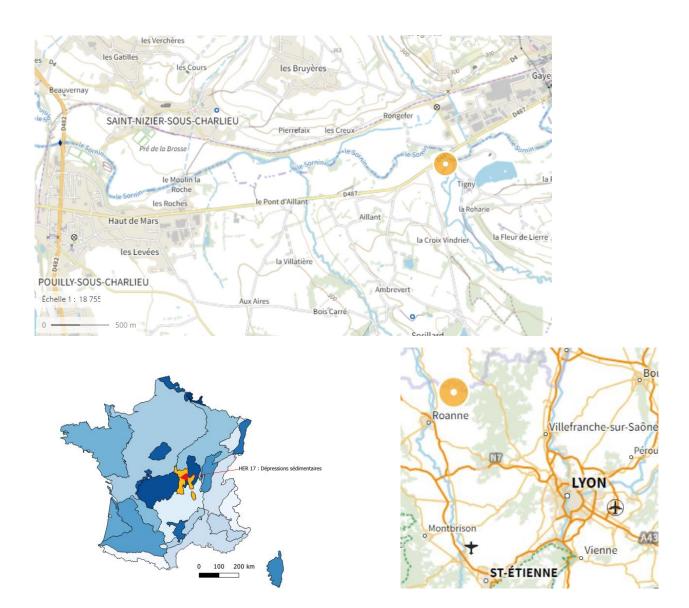


Figure 1 : Localisation de la station d'échantillonnage

→ DESCRIPTION DE LA STATION LE CHANDONNET A POUILLY-SOUS-CHARLIEU LSE2206-7689

- Conditions environnementales

Accessibilité: -

Météo : temps sec ensoleillé Ensoleillement : Moyen Teinte de l'eau : incolore

Hydrologie : Basses eaux **Visibilité du fond** : Moyenne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite
Lit majeur		Prairie	Prairie
Porgos	nature	Naturelle	Naturelle
Berges	pente	Pente moyenne	Pente moyenne
Binjaylya	état	Dense, Clairsemée	Dense, Clairsemée
Ripisylve	type	Herbacée, Arbustive, Arborescente	Herbacée, Arbustive, Arborescente

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficulténon

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...) : 3 Ephemera relâchés en phase B

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonico	oles (°C)	18,6	Très bon
eaux cyprinico	oles (°C)	18,6	Très bon
Oxygène dissous	(mg O2/L)	8,74	Très bon
Saturation en O2 diss	ous (%)	96,2	Très bon
Conductivité	(µS/cm)	267	*
pH	(unité de pH)	7,71	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 2,5 m Largeur plein bord Lpb:3,6 m

Longueur de la station: 65 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 70% Plat lentique, 10% Plat courant, 20% Radier,

→ GRILLE D'ECHANTILLONNAGE LE CHANDONNET A POUILLY-SOUS-CHARLIEU LSE2206-7689

Recouvrement of	les su	bstrats					Classes	de vites	<u>se</u>		
(surface relative sur la station)					Rapide		Moyenne		Lente	Nulle	
en fonction des cla	en fonction des classes de vitesse				≥ 75 cm/s N6	25 ≤	V < 75 cm/s N5	5 ≤	V < 25 cm/s N3	V	/ < 5 cm/s N1
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev
Bryophytes	S1										
Spermaphytes immergés (hydrophytes)	S2										
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3	2	М							+	A1
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	2	М					+		++	A2
Sédiments minéraux de grande taille, pierres- galets (25 à 250 mm)	S24	50	D			+	C9	+++	B5 C11	++	В8
Blocs facilement déplaçables (>250 mm)	S30	1	М							+	A3
Graviers (2,5 à 25 mm)	S9	37	D					+	C10	++	B6 C12
Spermaphytes émergents (hélophytes)	S10	1	М							+	A4
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11										
Sables (< 2 mm) - Limons	S25	5	D					+		++	В7
Algues - bactéries et champignons filamenteux	S18										
Surfaces uniformes dures naturelles ou artificielles	S29	2	М							+	

Total 100 %

- Description des prélèvements élémentaires

N°	Phase		Substrat vitesse		Matériel utilisé	Hauteur d'eau (cm)	Colmata (nature	1	codes : Intensité 0 : 0%	
1	Α	S3	litières	N1	nulle	Surber	15	-	-	1 : 1-20% 2 : 21-40%
2	Α	S28	racines-branchages	N1	nulle	Surber	8	-	-	3 : 41-60%
3	Α	S30	blocs	N1	nulle	Surber	18	-	-	4 : 61-80% 5 : 81-100%
4	Α	S10	hélophytes	N1	nulle	Surber	5	-	-	
5	В	S24	pierres	N3	lente	Surber	5	minéral	1	
6	В	S9	graviers	N1	nulle	Surber	8	minéral	2	
7	В	S25	sables-limons	N1	nulle	Surber	5	-	-	
8	В	S24	pierres	N1	nulle	Surber	15	minéral	2	
9	С	S24	pierres	N5	moyenne	Surber	5	-	-	
10	С	S9	graviers	N3	lente	Surber	12	-	-	
11	С	S24	pierres	N3	lente	Surber	10	-	-	
12	С	S9	graviers	N1	nulle	Surber	8	-	-	

→ LISTE FAUNISTIQUE LE CHANDONNET A POUILLY-SOUS-CHARLIEU LSE2206-7689

Liste faunistique : Date d'échantillonnage : 15/06/2022

PLECOPTERES Countries Co	Liste faunistique :	Date d'échanti	illonnage :	15/06/2022					
PLECOPTERES	TAXONS	code	GI	Genre	A	B	C	Effectif	Abondance
Leuctridae		sandre						total	relative
Leuctridae 66 7	PLECOPTERES								
TRICHOPTERES 189 7	Leuctridae	69	7	Leuctra		1	4		
Clossosomatidae	Leuctridae	66	7					5	0,10%
Goeridae	TRICHOPTERES								
Hydropsychidae	Glossosomatidae	189	7		1	2		3	0,06%
Hydropsychidae	Goeridae	286	7				2	2	0,04%
Leptoceridae	Hydropsychidae	212	3	Hydropsyche			5		
Leptoceridae	Hydrops ychidae	211	3					5	0,10%
Polycentropodidae	Leptoceridae	311	4	Athripsodes		2	3		
Polycentropodidae	Leptoceridae	310	4					5	0,10%
Rhyacophilidae	Polycentropodidae	231	4	Polycentropus		2			
Bacitidae 364 2	Polycentropodidae	223	4			2	2	6	0,12%
Baetidae 364 2 Baetis 18 15 72 8 8 8 8 8 8 8 8 8	Rhyacophilidae	183	4	Rhyacophila lato sensu	2		5	7	0,14%
Baetidae	EPHEMEROPTERES								
Baetidae 363 2	Baetidae	364	2	Baetis	18	15	72		
Caenidae	Baetidae	390	2	Procloeon	3	4			
Caenidae	Baetidae	363	2		1			113	2,24%
Caenidae	Caenidae	468	2	Brachycercus		1			
Ephemerellidae	Caenidae	457	2	Caenis	3	5	1		
Ephemerilidae	Caenidae	456	2					10	0,20%
Ephemeridae	Ephemerellidae	450	3	Ephemerella	14	7	12		
Heptageniidae	Ephemerellidae	449	3					33	0,65%
Heptageniidae	Ephemeridae	502	6	Ephemera	1	15	4	20	0,40%
Heptageniidae		421	5	Ecdyonurus		8	14		
Leptophlebiidae 491 7 Habrophlebia 3 3 3 3 15 57 1,13% COLEOPTERES Elmidae 618 2 Elmis 1 1 2 2 1 3 1 3 4	Heptageniidae	3181	5	Electrogena	13				
Leptophlebiidae		399	5			4		39	0,77%
COLEOPTERES Semidae	Leptophlebiidae	491	7	Habrophlebia		3	3		
Elmidae	Leptophlebiidae	473	7		3	33	15	57	1,13%
Elmidae	COLEOPTERES								
Emidae	Elmidae	618	2	Elmis	1	1	2		
Hydraenidae	Elmidae	619	2	Esolus		1	2		
Hydraenidae	Emidae	614	2					7	0,14%
DIPTERES Substitute	Hydraenidae	608		Hydraena			2		
Chironomidae	Hydraenidae	607						2	0,04%
Dixidae 793 1 0,02% Limoniidae 757 11 11 0,22% Tabanidae 837 1 3 4 0,08% ODONATES . ANISOPTERES 9787 . . . Gomphidae 682 Onychogomphus 1 . . . Gomphidae 678 1 0,02% . <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Limoniidae 757 11 11 0,22% Tabanidae 837 1 3 4 0,08% ODONATES ANISOPTERES 9787 .<	Chironomidae	807	1		827	1049	823	2699	53,48%
Limoniidae 757 11 11 0,22 % Tabanidae 837 1 3 4 0,08 % ODONATES ANISOPTERES 9787 .	Dixidae	793			1			1	0,02%
Tabanidae 837 1 3 4 0,08% ODONATES .	Limoniidae	757					11	11	0,22%
ODONATES . ANISOPTERES 9787 Gomphidae 682 Onychogomphus 1 Gomphidae 678 1 0,02%	Tabanidae				1	3			0,08%
Gomphidae 682 Onychogomphus 1 Gomphidae 678 1 0,02%	ODONATES								
Gomphidae 678 1 0,02%	ANISOPTERES	9787							
Gomphidae 678 1 0,02%	Gomphidae	682		Onychogomphus	1				
	_	678						1	0,02%
ME GILLOT TERILES	MEGALOPTERES								
Sialidae 704 Sialis 9 9 1 19 0,38%	Sialidae	704		Sialis	9	9	1	19	0,38%

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

CRUSTACES								
AMPHIPODES	3114							
Gammaridae	892	2	Gammarus	702	426	250		
Gammaridae	887	2					1378	27,30%
ISOPODES								
Asellidae	880	1		2			2	0,04%
DECAPODES								
Astacidae	872		Pacifastacus			2		
Astacidae	864						2	0,04%
AUTRES CRUSTACES							•	
Cladocères (présence)	3127				P		р	p
Copépodes (présence)	3206			P	P	P	р	p
MOLLUSQUES		2						
BIVALVES	3468							
Sphaeriidae	1043		Pisidium	5	11	30		
Sphaeriidae	1042			8	14	6	74	1,47%
GASTEROPODES								
Ancylidae	1028		Ancylus			1	1	0,02%
VERS ET AUTRES TAXONS								
OLIGOCHETES	933	1		20	432	73	525	10,40%
NEMATHELMINTHES	3111					2	2	0,04%
HYDRACARIENS	906		Hydracarina	4	4	5	13	0,26%
HYDROZOAIRES	3168		Hydrozoa		1		1	0,02%
Effectifs:				1640	2055	1352	5047	1,00
Nombre de taxons				23	28	28		

Nombre de taxons Taxon surligné : non pris en compte dans le calcul de l'indice

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

→ INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLOGIQUES - LE CHANDONNET A POUILLY-SOUS-CHARLIEU (04015299)

I₂M₂ et état biologique					
I_2M_2	0,415				
Etat biologique(Arrêté du 27/07/18)	Moyen				
Nb taxons contributifs	39				
Métriques en EQR					
Indice de Shannon	0,118				
ASPT	0,792				
Polyvoltinisme	0,341				
Ovoviviparité	0,436				
Richesse taxonomique	0,286				

IBG-DCE	
Nombre de taxons :	23
Classe de variété (/14) :	7
Groupe Faunistique Indicateur (/9) :	7
Taxon Indicateur :	Glossosomatidae
Equivalent I.B.G.N. / 20 :	13
Taille du cours d'eau /HER /EQR	TP3
Etat biologique (Arrêté du 27/07/2015)	Moyen
Robustesse (/20):	13
Taxon indicateur robustesse	Leptophlebiidae

OUTIL DIAGNOSTIQUE: probabilités des pressions potentielles Qualité de l'eau Dégradation de l'habitat Ripisylve Matière Organique Anthropisation Voies de du BV Matières communication Pesticides Phosphorées 0,4 Instabilité Urbanisation hydrologique Matières HAP Azotées Risque de colmatage Nitrates

M. Mourot
- Hydrobiologiste-

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 24/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7690

Nom du client : SYMISOA

Rau d'Aillant à Pouilly-sous-Charlieu

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ed	chantillonnage	Analyse				
Date et heure :	15/06/2022 de 8h45 à 9h55	Date :	15 et 16/03/2023			
Organisme et Opérateur terrain :	P. Weber & P. Porcherot / CARSO	Organisme et Opérateur labo :	P. Weber / CARSO			

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le Rau d'Aillant à Pouilly-sous-Charlieu (04410006).

→ RESULTATS DE L'ANALYSE

• <u>I₂M₂</u>:

Station	Rau d'Aillant à Pouilly- sous-Charlieu
I ₂ M ₂	0,330
Etat biologique*	Moyen

^{*} suivant l'arrêté du 27 juillet 2018

• <u>IBG-DCE</u>:

	Rau d'Aillant à Poi	uilly-sous-		
	Charlieu			
Nombre de taxons :	25			
Classe de variété (/14) :	8			
Groupe Faunistique Indicateur (/9) :	2			
Taxon Indicateur :	Gammarida	ae		
Equivalent-IBGN /20 :	9			
Taille du cours d'eau /HER /EQR	TP17	0,53333		
Etat biologique *	Moyen			

^{*} suivant l'arrêté du 27 juillet 2015

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

→ LOCALISATION GEOGRAPHIQUE

			Aillant à Pouilly-sous-Charlieu LSE2206-7690		
Commune :	Pouilly sous Charlieu	Coordonnées (Lambert 93)	Amont	Aval	
Département :	Loire (42)	Х	788349	788333	
Hydro- écorégion :	HER 17 : Dépressions sédimentaires	Y	6560360	6560317	

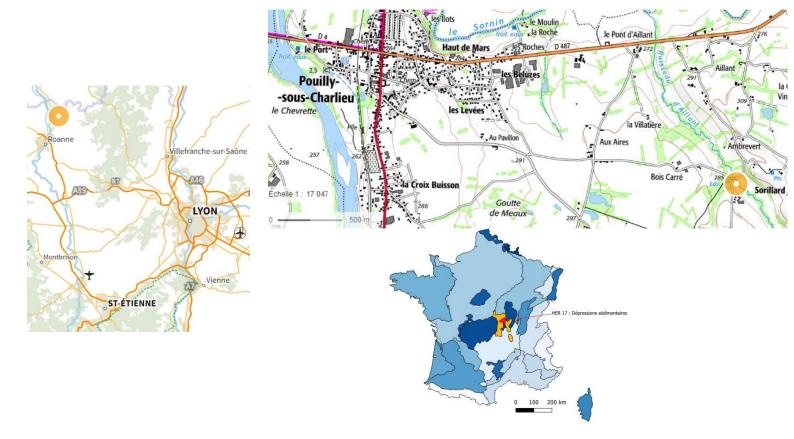


Figure 1 : Localisation de la station d'échantillonnage

- Photos de la station :

Amont de la station

Aval de la station

→ DESCRIPTION DE LA STATION LE RAU D'AILLANT A POUILLY-SOUS-CHARLIEU LSE2206-7690

- Conditions environnementales

Accessibilité : -

Météo : temps sec ensoleillé Ensoleillement : Moyen Teinte de l'eau : incolore

Hydrologie : Basses eaux Visibilité du fond : Moyenne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite	
Lit majeur		Prairie	Prairie	
Porgos	nature	Naturelle	Naturelle	
Berges	pente	Pente moyenne	Pente moyenne	
Diniovlyo	état	Dense, Clairsemée	Dense, Clairsemée	
Ripisylve	type	Herbacée, Arbustive, Arborescente	Herbacée, Arbustive, Arborescente	

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficultenon

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...):

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonicoles	s (°C)	16	Très bon
eaux cyprinicoles	s (°C)	16	Très bon
Oxygène dissous	(mg O2/L)	6,8	Bon
Saturation en O2 dissou	s (%)	70	Bon
Conductivité	(μS/cm)	496	*
рН	(unité de pH)	7,3	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 1,2 m Largeur plein bord Lpb: 2,3 m

Longueur de la station : 41 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 95% Plat lentique, 5% Radier,

→ GRILLE D'ECHANTILLONNAGE LE RAU D'AILLANT A POUILLY-SOUS-CHARLIEU LSE2206-7690

Recouvrement of	des su	bstrats					Classes	de vites	sse		
(surface relative	(surface relative sur la station) en fonction des classes de vitesse				Rapide ≥ 75 cm/s N6		Noyenne V < 75 cm/s N5	5≤	Lente V < 25 cm/s N3	V	Nulle < 5 cm/s N1
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev
Bryophytes	S1										
Spermaphytes immergés (hydrophytes)	S2										
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3	2	М							+	A1
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	10	D							+	B5
Sédiments minéraux de grande taille, pierresgalets (25 à 250 mm)	S24	60	D			+	C9	+++	B6 C11	++	B8 C10
Blocs facilement déplaçables (>250 mm)	S30	2	М							+	A2
Graviers (2,5 à 25 mm)	S9										
Spermaphytes émergents (hélophytes)	S10	2	М					++	A3	+	
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11										
Sables (< 2 mm) - Limons	S25	20	D							+	В7
Algues - bactéries et champignons filamenteux	S18										
Surfaces uniformes dures naturelles ou artificielles	S29	4	М							+	A4

Total 100 %

- Description des prélèvements élémentaires

	Beenpark de professioneria elementario									
N°	Phase		Substrat vitesse Matériel utilisé			Hauteur d'eau (cm)	Colmata (nature	1	code Intens 0:0	
1	Α	S3	litières	N1	nulle	Surber	23	-	-	1:1-2
2	Α	S30	blocs	N1	nulle	Surber	30	-	-	3:41-
3	Α	S10	hélophytes	N3	lente	Surber	16	-	-	4 : 61- 5 : 81-
4	Α	S29	surfaces uniformes	N1	nulle	Surber	20	-	-	
5	В	S28	racines-branchages	N1	nulle	Surber	25	minéral	2	
6	В	S24	pierres	N3	lente	Surber	12	minéral	2	
7	В	S25	sables-limons	N1	nulle	Surber	6	minéral	2	
8	В	S24	pierres	N1	nulle	Surber	3	minéral	2	
9	С	S24	pierres	N5	moyenne	Surber	5	minéral	2	
10	С	S24	pierres	N1	nulle	Surber	12	-	-	
11	С	S24	pierres	N3	lente	Surber	2	-	-	
12	С	S24	pierres	N3	lente	Surber	7	-	-	

→ LISTE FAUNISTIQUE LE RAU D'AILLANT A POUILLY-SOUS-CHARLIEU LSE2206-7690

N°enregistrement: LSE2206-7690 Cours d'eau: Rau d'Aillant Liste faunistique: Date d'échantillonnage: 15/06/2022

Liste faunistique :	Date d'echanti	monnage :	15/06/2022					
TAXONS	code	GI	Genre	A	В	C	Effectif	Abondance
	sandre						total	relative
TRICHOPTERES								
Brachycentridae	268	8	Micrasema		1			
Brachycentridae	262	8					1	0,05%
Hydropsychidae	212	3	Hydropsyche		1	12		
Hydropsychidae	211	3					13	0,67%
Psychomyiidae	241	4	Lype	2				
Psychomyiidae	238	4					2	0,10%
Rhyacophilidae	183	4	Rhyacophila lato sensu			14	14	0,72%
EPHEMEROPTERES								
Baetidae	364	2	Baetis		2	42		
Baetidae	363	2		4			48	2,47%
Caenidae	457	2	Caenis			1		
Caenidae	456	2					1	0,05%
Ephemerellidae	450	3	Ephemerella			1		
Ephemerellidae	449	3					1	0,05%
Ephemeridae	502	6	Ephemera			1	1	0,05%
Leptophlebiidae	473	7		1	1		2	0,10%
HETEROPTERES								
Corixidae	719		Micronecta		1			
Corixidae	709						1	0,05%
Gerridae	735		Gerris	3			3	0,15%
COLEOPTERES								
Elmidae	618	2	Elmis	1	1	12		
Elmidae	619	2	Esolus		1			
Elmidae	614	2					15	0,77%
Helophoridae	604		Helophorus	1			1	0,05%
Scirtidae	637		Hydrocyphon	14				
Scirtidae	634						14	0,72%
DIPTERES								
Chironomidae	807	1		86	280	127	493	25,37%
Dixidae	793			1			1	0,05%
Limoniidae	757			3			3	0,15%
Ptychopteridae	789			3			3	0,15%
Simuliidae	801					1	1	0,05%
Tabanidae	837			1			1	0,05%
ODONATES							•	
ZYGOPTERES	9785			1			1	
MEGALOPTERES								
Sialidae	704		Sialis	5	2	1	8	0,41%

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

CRUSTACES								
AMPHIPODES	3114							
Gammaridae	892	2	Gammarus	452	90	98		
Gammaridae	887	2					640	32,94%
DECAPODES							•	
Astacidae	872		Pacifastacus	2	2	5		
Astacidae	864						9	0,46%
AUTRES CRUSTACES							•	
Cladocères (présence)	3127			P	P	P	р	p
Copépodes (présence)	3206			P	P	P	р	p
Ostracodes (présence)	3170				P		p	p
MOLLUS QUES		2					•	
BIVALVES	3468						•	
Sphaeriidae	1042				1		1	0,05%
GASTEROPODES								
Ancylidae	1028		Ancylus		2	3	5	0,26%
Ferrissiidae	1030		Ferrissia			1	1	0,05%
Hydrobiidae	978		Potamopyrgus	7	1			
Hydrobiidae	973						8	0,41%
VERS ET AUTRES TAXONS								
TURBELLARIA	3326						•	
Dugesiidae	1055					1	1	0,05%
OLIGOCHETES	933	1		33	562	46	641	32,99%
NEMATHELMINTHES	3111				1	1	2	0,10%
HYDRACARIENS	906		Hydracarina	2	5		7	0,36%
Effectifs:				622	954	367	1943	1,00

Nombre de taxons 21 20

Taxon surligné : non pris en compte dans le calcul de l'indice

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

19

INTERPRETATIONS (HORS ACCREDITATION)

 I_2M_2

ASPT

Indice de Shannon

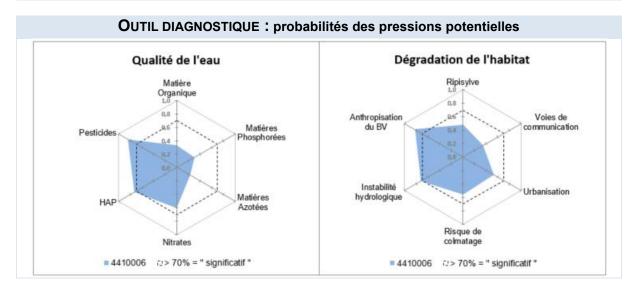
Richesse taxonomique

Polyvoltinisme

Ovoviviparité

INDICES BIOLOGIQUES - LE RAU D'AILLANT (04410006) I₂M₂ et état biologique 0,330 Etat biologique(Arrêté du 27/07/18) Moyen Nb taxons contributifs 33 Métriques en EQR

0,146


0,594

0,134

0,454

0.263

IBG-DCE								
Nombre de taxons :	25							
Classe de variété (/14) :	8							
Groupe Faunistique Indicateur (/9) :	2							
Taxon Indicateur :	Gammaridae							
Equivalent I.B.G.N. / 20 :	9							
Taille du cours d'eau /HER /EQR	TP17							
Etat biologique (Arrêté du 27/07/2015)	Moyen							
Robustesse (/20):	8							
Taxon indicateur robustesse	MOLLUSQUES							

M. Mourot - Hydrobiologiste-

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 25/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7700

Nom du client : SYMISOA

Le Jarnossin à Villers - 04014780

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ed	chantillonnage	Analyse				
Date et heure :	14/06/2022 de 9h à 10h10	Date :	Du 15/03 au 16/03/2023			
Organisme et Opérateur terrain :	H. Pichol & M. Lassau / CARSO	Organisme et Opérateur labo :	P.Weber / CARSO			

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le Jarnossin à Villers (04014780).

→ RESULTATS DE L'ANALYSE

• I₂M₂:

Station	Jarnossin à Villers
I ₂ M ₂	0,383
Etat biologique*	Moyen

^{*} suivant l'arrêté du 27 juillet 2018

• IBG-DCE:

	Jarnossin à V	illers	
Nombre de taxons :	33		
Classe de variété (/14) :	Classe de variété (/14) : 10		
Groupe Faunistique Indicateur (/9) : 7			
Taxon Indicateur :	Leuctridae		
Equivalent-IBGN /20 :	16		
Taille du cours d'eau /HER /EQR	TP3	0,83333	
Etat biologique *	Bon		
	·		

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

			Jarnossin à Villers LSE2206-7700			
Commune :	Villers	Coordonnées (Lambert 93)	Amont	Aval		
Département :	Loire (42)	X	795464	795457		
Hydro- écorégion :	HER 3 : Massif central Sud	Υ	6558196	6558169		

Figure 1 : Localisation de la station d'échantillonnage

→ DESCRIPTION DE LA STATION JARNOSSIN A VILLERS LSE2206-7700

- Conditions environnementales

Accessibilité: -

Météo : temps sec ensoleillé Ensoleillement : Faible Teinte de l'eau : marron clair

Hydrologie : Basses eaux **Visibilité du fond** : Bonne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite		
Lit majeur		Prairie	Prairie		
Porgo	nature	Naturelle	Naturelle		
Berges	pente	Pente moyenne	Pente moyenne		
Dinjoylya	état	Dense	Dense, Clairsemée		
Ripisylve	type	Herbacée, Arbustive	Herbacée, Arbustive, Arborescente		

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficulté

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...):

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonicole	es (°C)	12,4	Très bon
eaux cyprinicole	s (°C)	12,4	Très bon
Oxygène dissous	(mg O2/L)	9,31	Très bon
Saturation en O2 dissor	us (%)	90,1	Très bon
Conductivité	(μS/cm)	216	*
pH	(unité de pH)	7,723	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 1,9 m Largeur plein bord Lpb: 2,5 m

Longueur de la station : 45 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 30% Plat lentique, 70% Radier,

→ GRILLE D'ECHANTILLONNAGE JARNOSSIN A VILLERS LSE2206-7700

Recouvrement of	des su	bstrats					Classes	de vites	se_		
(surface relative sur la station) en fonction des classes de vitesse					Rapide ≥ 75 cm/s N6		Noyenne V < 75 cm/s N5	5≤	Lente V < 25 cm/s N3	V	Nulle < 5 cm/s N1
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev
Bryophytes	S1	1	М					++	A1	+	A4
Spermaphytes immergés (hydrophytes)	S2										
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3										
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	7	D					++	B5	+	
Sédiments minéraux de grande taille, pierres-galets (25 à 250 mm)	S24	40	D					+	B6 C9 C10C12		
Blocs facilement déplaçables (>250 mm)	S30										
Graviers (2,5 à 25 mm)	S9	20	D			++	B7	+			
Spermaphytes émergents (hélophytes)	S10	1	М					+	A2		
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11										
Sables (< 2 mm) - Limons	S25	30	D					+	C11	++	B8
Algues - bactéries et champignons filamenteux	S18										
Surfaces uniformes dures naturelles ou artificielles	S29	1	М					+	А3		

Total 100 %

- Description des prélèvements élémentaires

N°	Phase		Substrat		Substrat vitesse		vitesse	Matériel utilisé	Hauteur d'eau (cm)	Colmat (natur	e /	codes : Intensité 0 : 0%
1	Α	S1	bryophytes	N3	lente	Surber	3	-	-	1 : 1-20% 2 : 21-40%		
2	Α	S10	hélophytes	N3	lente	Surber	4	-	-	3:41-60%		
3	Α	S29	surfaces uniformes	N3	lente	Surber	15	-	-	4 : 61-80% 5 : 81-100%		
4	Α	S1	bryophytes	N1	nulle	Surber	3	-	-			
5	В	S28	racines-branchages	N3	lente	Surber	15	-	-			
6	В	S24	pierres	N3	lente	Surber	3	-	-			
7	В	S9	graviers	N5	moyenne	Surber	3	-	-			
8	В	S25	sables-limons	N1	nulle	Surber	18	-	-			
9	С	S24	pierres	N3	lente	Surber	4	-	-			
10	С	S24	pierres	N3	lente	Surber	5	-	-			
11	С	S25	sables-limons	N3	lente	Surber	12	-	-			
12	С	S24	pierres	N3	lente	Surber	6	-	-			

→ LISTE FAUNISTIQUE JARNOSSIN A VILLERS LSE2206-7700

 $N^{\circ}enregistrement: LSE2206-7700 \qquad Cours \ d'eau: \ Jarnossin$

Liste faunistique : Date d'échantillonnage : 14/06/2022

Liste faunistique :	Date d'échant	illonnage :	14/06/2022					
TAXONS	code	GI	Genre	A	B	C	Effectif	Abondance
	sandre						total	relative
PLECOPTERES							•	
Leuctridae	69	7	Leuctra	4	16	6		
Leuctridae	66	7					26	0,38%
Nemouridae	26	6	Nemoura	1				
Nemouridae	20	6					1	0,01%
TRICHOPTERES								
Brachycentridae	268	8	Micrasema	1				
Brachycentridae	262	8					1	0,01%
Limnephilidae	3163	3	SF Limnephilinae	8	3	2		
Limnephilidae	276	3					13	0,19%
Rhyacophilidae	183	4	Rhyacophila lato sensu	10	2	7	19	0,28%
EPHEMEROPTERES								
Baetidae	364	2	Baetis	56	7	105		
Baetidae	363	2					168	2,46%
Ephemerellidae	450	3	Ephemerella	84	18	84		
Ephemerellidae	449	3					186	2,72%
Ephemeridae	502	6	Ephemera			1	1	0,01%
Heptageniidae	421	5	Ecdyonurus	1		2		
Heptageniidae	404	5	Rhithrogena		1			
Heptageniidae	399	5	-				4	0,06%
Leptophlebiidae	491	7	Habrophlebia		1			
Leptophlebiidae	473	7	-		2	2	5	0,07%
HETEROPTERES								
Gerridae	735		Gerris		1		1	0,01%
Hydrometridae	740		Hydrometra			1	1	0,01%
Veliidae	743			9		2	11	0,16%
COLEOPTERES							•	
Elmidae	618	2	Elmis	70	55	17		
Elmidae	619	2	Esolus	1	2	2		
Elmidae	623	2	Limnius	1	8	9		
Elmidae	622	2	Oulimnius	16	2	8		
Elmidae	614	2					191	2,79%
Helophoridae	604		Helophorus	6		1	7	0,10%
Hydraenidae	608		Hydraena		2			
Hydraenidae	607						2	0,03%
Hydrophilidae	2517		SF Hydrophilinae	2				
Hydrophilidae	571						2	0,03%
Scirtidae	636		Helodes	2				
Scirtidae	634						2	0,03%
DIPTERES							•	
Anthomyiidae	847			2			2	0,03%
Ceratopogonidae	819			1		1	2	0,03%
Chironomidae	807	1		667	46	39	752	10,99%
Limoniidae	757			15	25	22	62	0,91%
Psychodidae	783			2	1	3	6	0,09%
Ptychopteridae	789					1	1	0,01%
Tipulidae	753			23			23	0,34%

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

<i>ODONATES</i>								
ZYGOPTERES	9785						•	
Calopterygidae	650		Calopteryx		1		1	0,01%
Platycnemididae	657		Platycnemis		3		3	0,04%
CRUSTACES								
AMPHIPODES	3114							
Gammaridae	892	2	Gammarus	1577	1942	1112		
Gammaridae	887	2					4631	67,69%
ISOPODES								
Asellidae	880	1		48	228	2	278	4,06%
DECAPODES								
Astacidae	872		Pacifastacus			1		
Astacidae	864						1	0,01%
AUTRES CRUSTACES								
Cladocères (présence)	3127				P	P	р	p
Copépodes (présence)	3206				P		р	p
Ostracodes (présence)	3170			P			р	p
MOLLUS QUES		2						
BIVALVES	3468							
Sphaeriidae	1043		Pisidium	6	5	10		
Sphaeriidae	1042			6	12	15	54	0,79%
GASTEROPODES								
Ancylidae	1028		Ancylus	8	3		11	0,16%
VERS ET AUTRES TAXONS								
ACHETES		1						
Erpobdellidae	928				1		1	0,01%
OLIGOCHETES	933	1		40	83	110	233	3,41%
NEMATHELMINTHES	3111					2	2	0,03%
HYDRACARIENS	906		Hydracarina	14	7	2	23	0,34%
HYDROZOAIRES	3168		Hydrozoa	76	28	10	114	1,67%
BRYOZOAIRES	1087		Bryozoa	P	P		р	р
Effectifs:				2757	2505	1579	6841	1,00
Nombre de taxons			<u> </u>	32	31	30		<u> </u>

Taxon surligné : non pris en compte dans le calcul de l'indice

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

→ INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLOGIQUES - LE JARNOSSIN A VILLERS (04014780)

I₂M₂ et état biologique	
I_2M_2	0,383
Etat biologique(Arrêté du 27/07/18)	Moyen
Nb taxons contributifs	44
Métriques en EQR	
Indice de Shannon	0,097
ASPT	0,589
Polyvoltinisme	0,384
Ovoviviparité	0,330
Richesse taxonomique	0,476

IBG-DCE	
Nombre de taxons :	33
Classe de variété (/14) :	10
Groupe Faunistique Indicateur (/9) :	7
Taxon Indicateur :	Leuctridae
Equivalent I.B.G.N. / 20 :	16
Taille du cours d'eau /HER /EQR	TP3
Etat biologique (Arrêté du 27/07/2015)	Bon
Robustesse (/20):	15
Taxon indicateur robustesse	Leptophlebiidae

OUTIL DIAGNOSTIQUE: probabilités des pressions potentielles Dégradation de l'habitat Qualité de l'eau Matière Ripisylve Organique 0.8 Voies de Anthropisation Matières du BV Pesticides Phosphorées Urbanisation Matières hy drologique Azotées Risque de Nitrates colmatage ■ 4014780 こ> 70% = " significatif "

M. Mourot
- HydrobiologisteCARSO

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 23/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7702

Nom du client : SYMISOA

Le Jarnossin à Jarnosse

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ed	hantillonnage	Analyse		
Date et heure :	14/06/2022 de 10h20à 11h35	Date :	Du 20 au 21/03/2023	
Organisme et Opérateur terrain :	H. Pichol & M. Lassau / CARSO	Organisme et Opérateur labo :	P. Weber / CARSO	

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le Jarnossin à Jarnosse (04410059).

→ RESULTATS DE L'ANALYSE

• <u>l₂M₂</u>:

Station	Jarnossin à Jarnosse
I ₂ M ₂	0,405
Etat biologique*	Moyen

^{*} suivant l'arrêté du 27 juillet 2018

• IBG-DCE:

	Le Jarnossin à Jarnosse			
Nombre de taxons :	32			
Classe de variété (/14) :	9			
Groupe Faunistique Indicateur (/9) :	7			
Taxon Indicateur :	Leuctridae			
Equivalent-IBGN /20 :	15			
Taille du cours d'eau /HER /EQR	TP3 0,777	778		
Etat biologique *	Bon			

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

			Jarnossin à Jarnosse LSE2206-7702				
Commune :	Jarnosse	Coordonnées (Lambert 93)	Amont	Aval			
Département :	Loire (42)	X	795750	795726			
Hydro- écorégion :	HER 3 : Massif central Sud	Y	6556802	6556813			

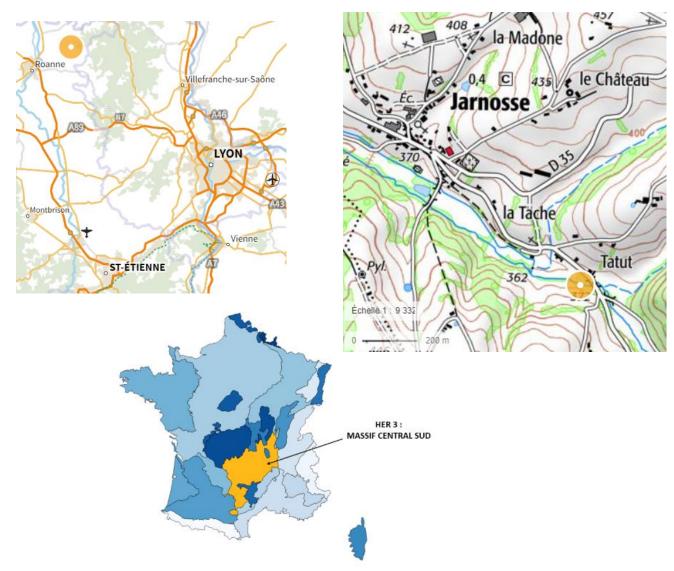


Figure 1 : Localisation de la station d'échantillonnage

→ DESCRIPTION DE LA STATION LE JARNOSSIN A JARNOSSE LSE2206-7702

- Conditions environnementales

Accessibilité: -

Météo : temps sec ensoleillé Ensoleillement : Faible Teinte de l'eau : incolore

Hydrologie : Basses eaux Visibilité du fond : Bonne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite
Lit majeur		Prairie	Prairie
Porgos	nature	Naturelle	Naturelle
Berges	pente	Pente forte	Pente faible
Dinjoylyo	état	Dense, Clairsemée	Dense, Clairsemée
Ripisylve	type	Herbacée, Arbustive, Arborescente	Herbacée, Arborescente

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficulte

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...):

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonicole	s (°C)	14,5	Très bon
eaux cyprinicole	s (°C)	14,5	Très bon
Oxygène dissous	(mg O2/L)	9,4	Très bon
Saturation en O2 dissou	ıs (%)	96	Très bon
Conductivité	(μS/cm)	114,8	*
pH	(unité de pH)	7,534	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 1,3 m Largeur plein bord Lpb: 2,1 m

Longueur de la station: 37 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 80% Plat lentique, 20% Radier,

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

→ GRILLE D'ECHANTILLONNAGE LE JARNOSSIN A JARNOSSE LSE2206-7702

Recouvrement des substrats			<u>Classes de vitesse</u>								
(surface relative sur la station) en fonction des classes de vitesse					Rapide ≥ 75 cm/s N6		Moyenne V < 75 cm/s N5	5≤	Lente V < 25 cm/s N3	V	Nulle < 5 cm/s N1
Nature du substrat	code Sandre	% de recouvrt	Dominant (D) Marginal (M) Présent	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev	ordre hiéra- rchiqu e	n° prelev
Bryophytes	S1	8	D					++	B5	+	
Spermaphytes immergés (hydrophytes)	S2										
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3										
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	2	М							+	A1 A3
Sédiments minéraux de grande taille, pierres- galets (25 à 250 mm)	S24	40	D			+++	В6	++	C9	+	C10
Blocs facilement déplaçables (>250 mm)	S30										
Graviers (2,5 à 25 mm)	S9	21	D							+	B7 C12
Spermaphytes émergents (hélophytes)	S10	1	М							+	A2 A4
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11										
Sables (< 2 mm) - Limons	S25	28	D							+	B8 C11
Algues - bactéries et champignons filamenteux	S18										
Surfaces uniformes dures naturelles ou artificielles	S29	400	0/								

Total 100 %

- Description des prélèvements élémentaires

N°	Phase	Substrat			vitesse	Matériel utilisé	Hauteur d'eau (cm)	Colmataç (nature	1	codes : Intensité 0:0%
1	Α	S28	racines-branchages	N1	nulle	Surber	11	-	-	1 : 1-20% 2 : 21-40%
2	Α	S10	hélophytes	N1	nulle	Surber	8	-	-	3:41-60%
3	Α	S28	racines-branchages	N1	nulle	Surber	4	-	-	4 : 61-80% 5 : 81-1009
4	Α	S10	hélophytes	N1	nulle	Surber	4	-	-	
5	В	S1	bryophytes	N3	lente	Surber	6	organique	5	
6	В	S24	pierres	N5	moyenne	Surber	5	-	-	
7	В	S9	graviers	N1	nulle	Surber	13	-	-	
8	В	S25	sables-limons	N1	nulle	Surber	14	-	-	
9	С	S24	pierres	N3	lente	Surber	2	-	-	
10	С	S24	pierres	N1	nulle	Surber	8	-	-	
11	С	S25	sables-limons	N1	nulle	Surber	23	-	-	
12	С	S9	graviers	N1	nulle	Surber	7	-	-	

→ LISTE FAUNISTIQUE LE JARNOSSIN A JARNOSSE LSE2206-7702

 $N^{\circ}enregistrement: LSE2206-7702 \qquad Cours~d'eau:~Jarnossin$

Liste faunistique : Date d'échantillonnage : 14/06/2022

Liste faunistique :	Date d'échant	llionnage :	14/06/2022					
TAXONS	code	GI	Genre	A	B	C	Effectif	Abondance
	sandre						total	relative
PLECOPTERES								
Leuctridae	69	7	Leuctra		5			
Leuctridae	66	7					5	0,28%
TRICHOPTERES								
Leptoceridae	311	4	Athripsodes		4	4		
Leptoceridae	312	4	Mystacides			3		
Leptoceridae	310	4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				11	0,62%
Limnephilidae	3163	3	SF Limnephilinae	4	2	1		*,*= **
Limnephilidae	276	3	SI Zimitepittimae			•	7	0,39%
Rhyacophilidae	183	4	Rhyacophila lato sensu		2		2	0,11%
EPHEMEROPTERES	103		Tanyacopinia tato sensa		_			0,11 /0
Baetidae	364	2	Baetis	1	11		•	
Baetidae	387	2	Cloeon	32	3			
Baetidae	363	2	Cioeon	34	,	6	53	2,97%
Ephemerellidae	363 450	3	En h on !! -	2	2	υ	55	4,9170
	450 449	3	Ephemerella	2	3		F	0,28%
Ephemerellidae			r 1		2	_	5	,
Ephemeridae	502	6	Ephemera	_	3	5	8	0,45%
Heptageniidae	399	5	**	1			1	0,06%
Leptophlebiidae	491	7	Habrophlebia			1		
Leptophlebiidae	473	7			6	6	13	0,73%
HETEROPTERES							•	
Hydrometridae	740		Hydrometra	12			12	0,67%
Veliidae	743			2			2	0,11%
COLEOPTERES							•	
Elmidae	618	2	Elmis		6			
Elmidae	623	2	Limnius		2			
Elmidae	622	2	Oulimnius		4	1		
Emidae	614	2					13	0,73%
Helophoridae	604		Helophorus	12			12	0,67%
Hydraenidae	608		Hydraena	1	4			
Hydraenidae	607						5	0,28%
Scirtidae	636		Helodes			1		
Scirtidae	634						1	0,06%
DIPTERES								
Ceratopogonidae	819					2	2	0,11%
Chironomidae	807	1		66	388	912	1366	76,53%
Culicidae	796			2			2	0,11%
Limoniidae	757				3	5	8	0,45%
Psychodidae	783			5	4	4	13	0,73%
Simuliidae	801				1		1	0,06%
Stratiomyidae	824				2		2	0,11%
Tabanidae	837			1	Ī	1	2	0,11%
Tipulidae	753			1		2	3	0,17%
ODONATES	,33							0,27,70
ZYGOPTERES	9785						•	
Coenagrionidae	658			2		1	3	0,17%
MEGALOPTERES	0.56			2		1		0,17/0
Sialidae	704		Sialis		1	3	4	0,22%
Standae	/04		sialis		1	3	4	0,44%

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

CRUSTACES								
AMPHIPODES	3114						•	
Gammaridae	892	2	<i>C</i>	5	20	3	•	
			Gammarus	3	20	3	20	1.55.07
Gammaridae	887	2					28	1,57%
ISOPODES					_		:	
Asellidae	880	1		2	1		3	0,17%
AUTRES CRUSTACES							•	
Cladocères (présence)	3127				P	P	p	p
Copépodes (présence)	3206			P	P	P	р	р
Ostracodes (présence)	3170			P	P	P	р	р
MOLLUSQUES		2						
BIVALVES	3468							
Sphaeriidae	1043		Pisidium		72	45		
Sphaeriidae	1042						117	6,55%
GASTEROPODES								
Ancylidae	1028		Ancylus		1		1	0,06%
Physidae	997		Physa lato-sensu	2	4			
Physidae	995						6	0,34%
VERS ET AUTRES TAXONS								
OLIGOCHETES	933	1		4	18	38	60	3,36%
NEMATHELMINTHES	3111				2		2	0,11%
HYDRACARIENS	906		Hydracarina	5	3	4	12	0,67%
Effectifs:				162	575	1048	1785	1,00
Nombre de taxons				22	30	24		

22 30 Nombre de taxons

Taxon surligné : non pris en compte dans le calcul de l'indice

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

→ INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLOGIQUES - LE JARNOSSIN A JARNOSSE (04410059)

l₂M₂ et état biologique	
I_2M_2	0,405
Etat biologique(Arrêté du 27/07/18)	Moyen
Nb taxons contributifs	40
Métriques en EQR	
Indice de Shannon	0,320
ASPT	0,478
Polyvoltinisme	0,392
Ovoviviparité	0,430
Richesse taxonomique	0,381

IBG-DCE								
Nombre de taxons :	32							
Classe de variété (/14) :	9							
Groupe Faunistique Indicateur (/9) :	7							
Taxon Indicateur :	Leuctridae							
Equivalent I.B.G.N. / 20 :	15							
Taille du cours d'eau /HER /EQR	TP3							
Etat biologique (Arrêté du 27/07/2015)	Bon							
Robustesse (/20):	15							
Taxon indicateur robustesse	Leptophlebiidae							

OUTIL DIAGNOSTIQUE: probabilités des pressions potentielles Dégradation de l'habitat Qualité de l'eau Ripisylve Matière Organique 0,8 Voies de Anthropisation Matières du BV communication Pesticides Phosphorées Instabilité Urbanisation Matières hydrologique HAP Azotées Risque de colmatage Nitrates

M. Mourot
- HydrobiologisteCARSO
L S E H L

CARSO
L S E H L

Indice Biologique Global – Directive Cadre sur l'Eau (IBG-DCE)

Normes AFNOR NF T 90-333 et NF T 90-388

Date édition du rapport : 25/05/2023

(rapport de 7 pages)

Annexe au rapport d'essai IBG-DCE : LSE2206-7701

Nom du client : SYMISOA

Le Jarnossin à Coutouvre

Analyse du peuplement de macroinvertébrés

→ INFORMATIONS RELATIVES A L'ESSAI

Ed	chantillonnage	Analyse		
Date et heure :	14/06/2022 de 12h à 13h10	Date :	Du 16 au 17/03/2023	
Organisme et Opérateur terrain :	H.Pichol & M. Lassau / CARSO	Organisme et Opérateur labo :	P.Weber / CARSO	

Grossissement 2 - 100 x

Type d'échantillonnage : *Global 3 phases* Fixation de l'échantillon : *alcool 96%* Finalité de l'étude : station informative

→ CONTEXTE DE L'ANALYSE

Le SYMISOA a mandaté le laboratoire CARSO pour réaliser le suivi de la qualité hydrobiologique des cours d'eau des bassins du Sornin et du Jarnossin. Le présent rapport concerne l'analyse du peuplement de macroinvertébrés sur le Jarnossin à Coutouvre (04014800).

→ RESULTATS DE L'ANALYSE

• I₂M₂:

Station	Le Jarnossin à Coutouvre
I_2M_2	0,398
Etat biologique*	Moyen

^{*} suivant l'arrêté du 27 juillet 2018

• IBG-DCE:

	Le Jarnossin à C	outouvre	
Nombre de taxons :	27		
Classe de variété (/14) :	8		
Groupe Faunistique Indicateur (/9) :	7		
Taxon Indicateur :	Leptophlebii	dae	
Equivalent-IBGN /20 :	14		
Taille du cours d'eau /HER /EQR	TP3	0,72222	
Etat biologique *	Moyen		

^{*} suivant l'arrêté du 27 juillet 2015

→ LOCALISATION GEOGRAPHIQUE

			Jarnossin à Coutouvre LSE2206-7701			
Commune :	Coutouvre	Coordonnées (Lambert 93)	Amont	Aval		
Département :	Loire (42)	Х	792895	792863		
Hydro- écorégion :	HER 3 : Massif central Sud	Υ	6555216	6555251		

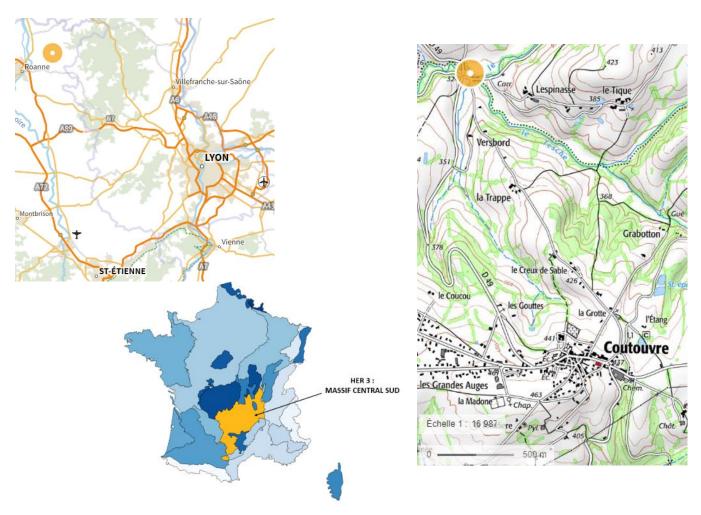


Figure 1 : Localisation de la station d'échantillonnage

→ DESCRIPTION DE LA STATION LE JARNOSSIN A COUTOUVRE LSE2206-7701

- Conditions environnementales

Accessibilité: -

Météo : temps sec ensoleillé Ensoleillement : Faible Teinte de l'eau : incolore

Hydrologie: Basses eaux Visibilité du fond: Bonne

Situation hydrologique les semaines précédant le prélèvement Débit stable

		Rive Gauche	Rive Droite
Lit majeur		Prairie	Prairie
Porgo	nature	Naturelle	Naturelle
Berges pente		Pente moyenne	Pente moyenne
Pinicylyo	état	Dense, Clairsemée	Dense, Clairsemée
Ripisylve	type	Herbacée, Arbustive, Arborescente	Herbacée, Arbustive, Arborescente

Piétinement éventuel du cours d'eau lors de la reconnaissance et justification de la difficulté

Commentaires (difficultés rencontrées, signes de pollution, aménagements, taxons relâchés, ...):

- Qualité physico-chimique de l'eau

Le tableau ci-dessous synthétise les paramètres mesurés sur le terrain à l'aide de sondes multi-paramètres WTW et interprétés selon l'arrêté du 25 janvier 2010, modifié du 27 juillet 2018.

Paramètres			Classes d'état
Température de l'eau			
eaux salmonicoles	s (°C)	14,9	Très bon
eaux cyprinicoles	s (°C)	14,9	Très bon
Oxygène dissous	(mg O2/L)	8,41	Très bon
Saturation en O2 dissou	s (%)	85,5	Bon
Conductivité	(μS/cm)	305	*
pH	(unité de pH)	7,938	Très bon

^{*}Selon l'arrêté, les connaissances actuelles ne permettent pas de fixer des valeurs seuils fiables pour ce paramètre

- Description du point de prélèvement

Largeur moyenne au miroir Lm: 1,3 m Largeur plein bord Lpb:4,2 m

Longueur de la station : 76 m, correspondant à 3 séquences radiers /mouilles

Faciès d'écoulement : 65% Plat lentique, 35% Radier,

→ GRILLE D'ECHANTILLONNAGE LE JARNOSSIN A COUTOUVRE LSE2206-7701

Recouvrement of	des su	bstrats					Classes	de vites	<u>se</u>			
(surface relative sur la station)					Rapide		Moyenne		Lente		Nulle	
en fonction des classes de vitesse					V ≥ 75 cm/s		25 ≤ V < 75 cm/s		V < 25 cm/s	V < 5 cm/s		
		1	Dominant	ordre	N6	ordre	N5	ordre	N3	N1 ordre		
Nature du substrat	code Sandre	% de recouvrt	(D) Marginal (M) Présent	hiéra- rchiqu e	n° prelev	hiéra- rchiqu e	n° prelev	hiéra- rchiqu e	n° prelev	hiéra- rchiqu e	n° prelev	
Bryophytes	S1	1	М					+	A1			
Spermaphytes immergés (hydrophytes)	S2											
Débris organiques grossiers (litières) (Ø < 5mm brindilles)	S3	2	М							+	A2	
Chevelus racinaires libres dans l'eau - Substrats ligneux (Ø > 5mm)	S28	8	D					++	B5	+		
Sédiments minéraux de grande taille, pierresgalets (25 à 250 mm)	S24	50	D			++	C9	+++	B6 C11	+	C10	
Blocs facilement déplaçables (>250 mm)	S30	2	М					+	A3			
Graviers (2,5 à 25 mm)	S9	26	D					+	C12	++	В7	
Spermaphytes émergents (hélophytes)	S10											
Vases : sédiments fins avec débris organiques fins (<0,1 mm)	S11											
Sables (< 2 mm) - Limons	S25	10	D							+	В8	
Algues - bactéries et champignons filamenteux	S18											
Surfaces uniformes dures naturelles ou artificielles	S29	1	М					++	A4	+		

Total 100 %

- Description des prélèvements élémentaires

	- Description des prelevements elementantes									
N°	Phase	Substrat		Substrat vitesse		Matériel utilisé	Hauteur d'eau (cm)	(nature /	codes : Intensité 0 : 0%	
1	Α	S1	bryophytes	N3	lente	Surber	7	organique 1	1 : 1-20% 2 : 21-40%	
2	Α	S3	litières	N1	nulle	Surber	13	organique 1	3 : 41-60%	
3	Α	S30	blocs	N3	lente	Surber	26	organique 1	4 : 61-80% 5 : 81-100%	
4	Α	S29	surfaces uniformes	N3	lente	Surber	10	organique 1		
5	В	S28	racines-branchages	N3	lente	Surber	20	organique 1		
6	В	S24	pierres	N3	lente	Surber	7	organique 1		
7	В	S9	graviers	N1	nulle	Surber	8	organique 1		
8	В	S25	sables-limons	N1	nulle	Surber	14	organique 1		
9	С	S24	pierres	N5	moyenne	Surber	4	organique 1		
10	С	S24	pierres	N1	nulle	Surber	6	organique 1		
11	С	S24	pierres	N3	lente	Surber	7	organique 1		
12	С	S9	graviers	N3	lente	Surber	6	organique 1		

→ LISTE FAUNISTIQUE LE JARNOSSIN A COUTOUVRE LSE2206-7701

 $N^{\circ}enregistrement: LSE2206-7701 \qquad Cours \ d'eau: \ Janossin$

Liste faunistique:	Date d'échant	illonnage :	14/06/2022					
TAXONS	code	GI	Genre	A	В	C	Effectif	Abondance
	sandre						total	relative
PLECOPTERES								
Leuctridae	69	7	Leuctra		1	6		
Leuctridae	66	7					7	0,22%
TRICHOPTERES								
Beraeidae	328	7	Beraea		1			
Beraeidae	327	7					1	0,03%
Glossosomatidae	189	7				5	5	0,16%
Hydropsychidae	212	3	Hydropsyche			1		
Hydropsychidae	211	3					1	0,03%
Leptoceridae	311	4	Athripsodes		3	2		
Leptoceridae	310	4					5	0,16%
Limnephilidae	3163	3	SF Limnephilinae	2	1	13		
Limnephilidae	276	3	Î				16	0,50%
Rhyacophilidae	183	4	Rhyacophila lato sensu			6	6	0,19%
EPHEMEROPTERES								
Baetidae	364	2	Baetis		6	16		
Baetidae	363	2					22	0,69%
Ephemerellidae	450	3	Ephemerella	16	3	11		
Ephemerellidae	449	3					30	0,94%
Ephemeridae	502	6	Ephemera		9	8	17	0,53%
Heptageniidae	421	5	Ecdyonurus			2		
Heptageniidae	3181	5	Electrogena		4			
Heptageniidae	399	5					6	0,19%
Leptophlebiidae	491	7	Habrophlebia			1		
Leptophlebiidae	473	7		13	3	4	21	0,66%
HETEROPTERES								
Hydrometridae	740		Hydrometra		1		1	0,03%
COLEOPTERES								
Elmidae	618	2	Elmis	20	3	8		
Elmidae	623	2	Limnius	2	3	16		
Elmidae	622	2	Oulimnius	1		1		
Elmidae	614	2					54	1,69%
Helophoridae	604		Helophorus	8			8	0,25%
Hydraenidae	608		Hydraena	1		3		
Hydraenidae	607						4	0,13%
DIPTERES								
Ceratopogonidae	819				4	1	5	0,16%
Chironomidae	807	1		187	83	162	432	13,54%
Dixidae	793			2			2	0,06%
Limoniidae	757				14	25	39	1,22%
Tipulidae	753			1		1	2	0,06%

Laboratoire agréé pour les analyses d'eaux par le Ministère de la Santé

AMPHIPODES Gammaridae Gammaridae	3114 892 887	2 2	Gammarus	988	188	1139	2315	72,57%
DECAPODES Astacidae Astacidae	872 864		Pacifastacus		1	3	4	0,13%
AUTRES CRUSTACES Cladocères (présence) Copépodes (présence) Ostracodes (présence)	3127 3206 3170			P	P	P P	p p p	p p p
MOLLUSQUES		2						
BIVALVES	3468							
Sphaeriidae	1043		Pisidium		11	13		
Sphaeriidae GASTEROPODES	1042				21	10	55	1,72%
Ancylidae	1028		Ancylus	1	4	3	8	0,25%
Hydrobiidae	978		Potamopyrgus		1	2		,
Hydrobiidae	973		12.0				3	0,09%
VERS ET AUTRES TAXONS								
OLIGOCHETES	933	1		3	33	41	77	2,41%
NEMATHELMINTHES	3111				2	1	3	0,09%
HYDRACARIENS	906		Hydracarina	11	5	6	22	0,69%
HYDROZOAIRES	3168		Hydrozoa	6	9	4	19	0,60%
Effectifs:				1262	414	1514	3190	1,00

Nombre de taxons 17 26 32

Taxon surligné : non pris en compte dans le calcul de l'indice

Les individus trop jeunes ou trop abimés ne pouvant pas être déterminés au niveau systématique demandé par la norme, sont déterminés au niveau systématique supérieur

→ INTERPRETATIONS (HORS ACCREDITATION)

INDICES BIOLOGIQUES - LE JARNOSSIN A COUTOUVRE (04014800)

l₂M₂ et état biologique	
I_2M_2	0,398
Etat biologique(Arrêté du 27/07/18)	Moyen
Nb taxons contributifs	35
Métriques en EQR	
Indice de Shannon	0,030
ASPT	0,716
Polyvoltinisme	0,479
Ovoviviparité	0,380
Richesse taxonomique	0,262

IBG-DCE									
Nombre de taxons :	27								
Classe de variété (/14) :	8								
Groupe Faunistique Indicateur (/9) :	7								
Taxon Indicateur :	Leptophlebiidae								
Equivalent I.B.G.N. / 20 :	14								
Taille du cours d'eau /HER /EQR	TP3								
Etat biologique (Arrêté du 27/07/2015)	Moyen								
Robustesse (/20):	13								
Taxon indicateur robustesse	Ephemeridae								

OUTIL DIAGNOSTIQUE: probabilités des pressions potentielles Dégradation de l'habitat Qualité de l'eau Matière Ripisylve Organique Anthropisation Voies de du BV communication Matières Pesticides Phosphorées 0,4 Instabilité Urbanisation Matières hydrologique HAP Azotées Risque de Nitrates colmatage ■ 4014800 ご> 70% = " significatif "

M. Mourot
- Hydrobiologiste-