











Cette étude fait l'objet d'une compensation carbone



# 6 agences couvrant l'ensemble du territoire et plus de 20 ans d'expérience d'étude des milieux aquatiques.

Agence Sud-Ouest - Siège social

ZA du Grand Bois Est, route de Créon 33750 SAINT-GERMAIN-DU-PUCH

Tel. 05 57 24 57 21

contact@aquabio-conseil.com

#### **Agence Centre**

ZAC les Acilloux, 10 rue Hector Guimard 63800 COURNON D'AUVERGNE

Tel. 04 73 24 77 40

centre@aquabio-conseil.com

#### **Agence Nord-Est**

Ferme du Marot - D14 25870 CHÂTILLON-LE-DUC Tel. 03 81 52 97 46 nord-est@aquabio-conseil.com

Agence Ouest

ZAC Beauséjour, rue de la gare du tram 35520 LA MÉZIÈRE

Tel. 02 99 69 73 77

ouest@aquabio-conseil.com

#### **Agence Sud-Est**

11 rue de la Charette Bleue 26110 NYONS Tel. 04 75 26 03 32 sud-est@aquabio-conseil.com

#### Agence de Chambéry

Bâtiment Andromède, 108 avenue du Lac Léman BP70363

73372 Le Bourget du Lac Cédex

Tel. 04 79 33 64 55

chambery @ aquabio-conseil.com

**NY201-07** VERSION 1 **11.01.22** 

M211022

# VALIDATEUR

Nom : Stéphanie RIOM Date : 12 janvier 2022

Visa:

Lýon Bayonne
Perpignan

Nos relais et partenaires locaux

Paris, Bayonne, Lyon, Perpignan

RÉDACTEUR Nom: Thomas LEBLOND Date: 11 janvier 2022

Visa:

1...

# **SOMMAIRE**

| SOMMAIRE                                                                                                                                                                   | 3  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| INTRODUCTION                                                                                                                                                               | 4  |
| MÉTHODOLOGIE                                                                                                                                                               |    |
| I.1. Prélèvements                                                                                                                                                          |    |
| I.3. Analyses des échantillons                                                                                                                                             |    |
| II. Les macroinvertébrés aquatiques en rivières peu profondes                                                                                                              | 7  |
| II.2. Conditions d'applications  III. Les diatomées benthiques en rivières                                                                                                 | 8  |
| III.1. Bref descriptif de la méthodeIII.2. Conditions d'application                                                                                                        | 8  |
| OUTILS D'AIDE À L'INTERPRÉTATION DES ANALYSES  I. L'Indice Invertébrés MultiMétriques I2M2                                                                                 |    |
| II. Indices diatomées                                                                                                                                                      |    |
| 4                                                                                                                                                                          |    |
| III. Évaluation de l'état écologique<br>III.1.1. Éléments de qualité biologique pour les cours d'eau<br>III.1.2. Éléments de qualité physico-chimique pour les cours d'eau | 12 |
| CONTEXTE DE L'ETUDE  I. Les stations étudiées                                                                                                                              |    |
| II. Hydrologie                                                                                                                                                             | 18 |
| RÉSULTATS ET INTERPRÉTATION DES ANALYSES  I. Résultats des analyses                                                                                                        |    |
| CONCLUSION                                                                                                                                                                 | 22 |
| RÉFÉRENCES BIBLIOGRAPHIQUES                                                                                                                                                | 23 |
| ANINITYE                                                                                                                                                                   | 25 |





## **INTRODUCTION**

À la demande du syndicat mixte d'aménagement et d'entretien de la Loise et de la Toranche (SMAELT), une étude hydrobiologique a été menée en 2021 sur 15 stations appartenant au réseau de contrôle de l'agence de l'eau Loire Bretagne, au réseau de suivi des peuplements piscicole départemental, et au réseau local de suivi. Cette étude s'inscrit dans le cadre du « contrat territorial Bernand, Revoute, Loise, et Toranche » et doit servir à la fois de bilan sur la période 2017-2021 et de base pour la construction du futur contrat territorial.

Cette étude a consisté en la réalisation d'un suivi physico-chimique, d'une analyse des pesticides et d'un suivi hydrobiologique (macroinvertébrés et diatomées).

Les prélèvements, l'analyse et la rédaction du rapport ont été effectués par le personnel d'AQUABIO suivant :

<u>Tableau I : Personnel ayant participé à l'étude</u>

|                                     |                   | Prélèvements | Analyses | Rapport d'étude |
|-------------------------------------|-------------------|--------------|----------|-----------------|
| Responsable<br>Technique des Etudes | RIOM Stéphanie    |              |          | X (validation)  |
|                                     | Adèle BOULARD     |              | Х        |                 |
|                                     | Bélinde VERDIER   |              | Х        |                 |
|                                     | Caroline BREUGNOT |              | Х        |                 |
|                                     | Jonathan CHARLES  |              | Х        |                 |
|                                     | Julien COUSTILLAS |              | X        |                 |
| Hydroécologues                      | Pauline FAIT      | X            |          |                 |
| nyuroecologues                      | Pierre OLIVIER    | X            |          |                 |
|                                     | Sébastien PREVOST |              | X        |                 |
|                                     | Thomas LEBLOND    |              |          | Х               |
|                                     | Vincent BERTHON   |              | X        |                 |
|                                     | Yann BECKER       |              | X        |                 |
|                                     | BECKER Yann       |              | X        |                 |



#### I. PHYSICO-CHIMIE

#### I.1. Prélèvements

Les techniques de prélèvements correspondent aux exigences normatives relatives à l'échantillonnage des rivières et cours d'eau (AFNOR, 2007), (AFNOR, 2016a) (AFNOR, 2018) et s'appuient sur le guide de prélèvement pour le suivi de la qualité des eaux dans l'environnement (AFNOR, 2019a:90-523-1), ainsi que le guide des opérations d'échantillonnage d'eau en cours d'eau (AQUAREF, 2017).

Les prélèvements d'eau sont effectués principalement dans la veine d'écoulement principale, à l'aide d'une perche télescopique ou directement à la main, suivant l'accessibilité au lit du cours d'eau.

Les échantillons sont ensuite transférés directement dans les flacons d'analyse fournis par le laboratoire d'analyse, après que ces derniers aient été rincés, hormis dans le cas où un fixateur soit déjà présent dans le récipient, notamment dans le cas des analyses bactériologiques.

#### I.2. Conditionnement des échantillons

Les échantillons sont stockés au fur et à mesure des opérations de prélèvement dans un réfrigérateur de voiture possédant une plage de +1°C à +25°C. Ils sont déposés au laboratoire le jour même et stockés au sein du laboratoire en enceintes réfrigérées ou envoyés au laboratoire le jour même par transporteur.

#### I.3. Analyses des échantillons

Les analyses sont réalisées par le Laboratoire des Pyrénées et des Landes (LPL). Les analyses couvertes par l'accréditation COFRAC ainsi que toutes les méthodes mises en œuvre sont décrites dans le tableau suivant.

Tableau II: Liste des analyses sous COFRAC du laboratoire LPL

| Paramètres                           | Accréditation | Norme ou méthode  |
|--------------------------------------|---------------|-------------------|
| MES                                  | ©             | NF EN 872         |
| COD                                  | ©             | NF EN 1484        |
| DBO5                                 | ©             | NF EN1899-2       |
| Ammonium (NH4 <sup>+</sup> )         | ©             | Méthode interne   |
| Nitrates (NO3 <sup>-</sup> )         | ©             | NF EN ISO 10304-1 |
| Nitrites (NO2 <sup>-</sup> )         | ©             | Méthode interne   |
| Azote Kjeldahl (NTK)                 | ©             | NF EN 25663       |
| Orthophosphates (PO4 <sup>3-</sup> ) | ©             | Méthode interne   |
| Phosphore                            | ©             | Méthode interne   |





### I.4. Mesures des paramètres non conservatifs

Les paramètres non conservatifs sont mesurés sur place directement dans le cours d'eau.

Les valeurs d'Oxygène sont récoltées à l'aide d'une sonde optique (type de sonde reconnu pour la stabilité de sa mesure et son faible besoin d'étalonnage).

La conductivité et le pH sont mesurés grâce à une sonde de marque WTW comprenant un pH-mètre, un conductimètre et une sonde température. La température relevée est celle de la sonde conductivité. Afin d'assurer des mesures fiables, un étalonnage des sondes est effectué de manière hebdomadaire et une vérification des sondes deux fois par jour.

Les mesures se font après stabilisation de la valeur et selon les préconisations du constructeur. La précision des sondes et l'incertitude associée à chaque paramètre sont présentées dans le tableau ci-dessous.

Tableau III: Préconisations constructeur des sondes et incertitudes associées (au 06/11/20)

|                                        | Données constructeur |            |                       |          |             |  |
|----------------------------------------|----------------------|------------|-----------------------|----------|-------------|--|
|                                        | Plage de mesure      | Résolution | Précision             | Gamme    | Incertitude |  |
| рН                                     | -2,00 à +20,00       | 0,01 pH    | +/- 0,01              | -        | 5%          |  |
|                                        | 0 à 199,9 μS/cm      | 0,1 μS/cm  | +/- 0,5% de la valeur |          |             |  |
| Conductivité                           | 200 à 1999 μS/cm     | 1 μS/cm    | +/- 0,5% de la valeur | -        | 8%          |  |
|                                        | 2 à 19,99 mS/cm      | 0,01 mS/cm | +/- 0,5% de la valeur |          |             |  |
| Température<br>(sonde conductimètre)   | - 5 à +80 ℃          | 0,1 °C     | +/- 0,1 °C            | -        | ± 0,67 °C   |  |
| O, dissous - concentration             | 0 à 20 mg/l          | 0.01 mg/l  | L/ O E% do la valour  | >5 mg/l  | ± 17%       |  |
| o <sub>2</sub> dissous - concentration | 0 à 20 mg/l          | 0,01 mg/l  | +/- 0,5% de la valeur | < 5 mg/l | ± 2 mg/l    |  |
| O <sub>2</sub> dissous - saturation    | 0 à 200 %            | 0,1 %      | +/- 0,5% de la valeur | -        | -           |  |





## II. LES MACROINVERTÉBRÉS AQUATIQUES EN RIVIÈRES PEU PROFONDES

## II.1. Descriptif de la méthode

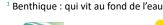
Dans le cadre de la mise en œuvre de la Directive Cadre Européenne sur l'Eau (DCE), le protocole de prélèvement de macro-invertébrés aquatiques en rivières peu profondes a été établi pour évaluer la qualité biologique globale des masses d'eau.

Il permet d'apprécier la qualité des eaux courantes en analysant le peuplement d'invertébrés benthiques<sup>1</sup>, considéré comme une expression de la qualité globale de la rivière (certains disparaissent dans un milieu pollué, d'autres au contraire apparaissent). Il a pour objectifs de :

- > Fournir une image représentative du peuplement d'invertébrés d'une station en séparant la faune des habitats dominants et des habitats marginaux;
- > Permettre de calculer l'indice multi-métrique d'évaluation de l'état écologique, I2M2 à partir des invertébrés, pour les réseaux de surveillance; un indice à la fois conforme aux exigences de la DCE et cohérent avec les différentes méthodes européennes.

Les prélèvements sont réalisés selon la norme relative au prélèvement des macro-invertébrés aquatiques en rivières peu profondes (AFNOR, 2016b:90-333) et son guide d'application (AFNOR, 2017:90-733). Suite au positionnement de la station, la méthode préconise d'échantillonner douze prélèvements de substrats différents (pierres, sables, végétaux...) de 1/20 m². Ils sont répartis, dans la mesure du possible, sur l'ensemble de la station et tiennent compte des différentes classes de vitesse représentées (facteur important de diversification des peuplements d'invertébrés benthiques). En fonction de leur accessibilité, les échantillons sont prélevés à l'aide d'un filet Surber ou d'un haveneau.

Sur les douze prélèvements, huit échantillons sont prélevés dans les habitats dominants et les quatre autres dans les habitats marginaux. Ils sont rassemblés en 3 groupes de 4 relevés :


- Phase A = regroupement des 4 supports marginaux prélevés suivant l'ordre d'habitabilité,
- Phase B = regroupement des 4 supports dominants prélevés suivant l'ordre d'habitabilité,
- > Phase C = regroupement des 4 supports dominants prélevés en privilégiant la représentativité des habitats.

Les invertébrés benthiques sont ensuite extraits des substrats sous loupe binoculaire et identifiés au genre d'une manière générale. Pour cette phase d'analyse, les échantillons sont traités selon la norme relative à l'analyse d'échantillons contenant des macro-invertébrés de cours d'eau, canaux et plans d'eau (AFNOR, 2020:90-388)

## II.2. Conditions d'applications

Cette méthode n'est valable qu'à certaines conditions, et particulièrement la **stabilité de l'hydrologie** depuis 10 jours.

Elle s'applique pour les cours d'eau très petits à moyens dont la totalité ou la quasi-totalité des habitats présents dans le lit mouillé peuvent être prospectés en période de basses eaux, à pieds ou au moyen d'embarcations légères, avec des appareils à main de type filet Surber.







## III. LES DIATOMÉES BENTHIQUES EN RIVIÈRES

#### III.1. Bref descriptif de la méthode

L'inventaire des communautés de diatomées est effectué conformément à la norme relative à l'échantillonnage, le traitement et l'analyse de diatomées benthiques en cours d'eau et canaux (AFNOR, 2016c:90-354)

Les prélèvements sont effectués préférentiellement sur des substrats stables, durs et inertes tels que des pierres ou des galets. Le choix du substrat s'effectue selon des critères de taille et de localisation dans le chenal. Le substrat doit être d'une taille suffisante pour ne pas avoir été transporté lors des dernières crues. Il doit également avoir été immergé toute l'année.

Les habitats situés au centre du chenal, en faciès plutôt lotique et sur des zones éclairées sont privilégiés. Ces conditions de prélèvements sont privilégiées dans la mesure du possible, en fonction des caractéristiques du milieu. Le peuplement benthique est récolté par grattage du substrat sur une surface d'au moins 100 cm². Les brosses utilisées sont à usage unique pour éviter ainsi toutes contaminations entre les sites. Le matériel biologique est ensuite fixé sur site avec de l'ethanol dans des piluliers préalablement étiquetés.

En laboratoire les échantillons subissent plusieurs nettoyages chimiques (H2O2, HCl) pour détruire la matière organique et les carbonates de calcium. Les frustules des diatomées sont ensuite montés entre lame et lamelle dans une résine à haut indice de réfraction (Naphrax) et sont observés en microscopie optique (x1000 à immersion et en contraste de phase ou interférentiel).

Les identifications des diatomées sont basées entre autres sur les ouvrages Freshwater benthic diatoms (Lange-Bertalot *et al.*, 2017) , Süßwasserflora von Mitteleuropa ((Krammer et al., 1986),(Krammer et al., 1991) ainsi que sur les Atlas régionaux des diatomées de France.

#### III.2. Conditions d'application

La méthode IBD est seulement valable en milieu continental et recommande de s'assurer de la stabilité de l'hydrologie avant l'opération de prélèvement. Dans le cas contraire il est recommandé de respecter un délai allant de quelques jours à 4 semaines après un événement hydrologique, selon son intensité.





## **OUTILS D'AIDE À L'INTERPRÉTATION DES ANALYSES**

Pour les indicateurs disponibles sur le **Système d'Evaluation de l'État des Eaux SEEE** (www.seee.eaufrance.fr.), les calculs d'indices sont faits par une API interrogeant les algorithmes du service de calcul.

## I. L'INDICE INVERTÉBRÉS MULTIMÉTRIQUES 12M2

Pour les cours d'eau peu profonds, l'I2M2 permet d'avoir une vision représentative du peuplement de macroinvertébrés sur la station. Il prend en compte la typologie des cours d'eau et intègre le calcul d'un écart à un état de référence.

#### > Les métriques élémentaires de l'Indice Invertébrés MultiMétriques I2M2

Chaque métrique composant l'indice permet de discriminer au moins 60 % des sites subissant des altérations physico-chimiques ou hydromorphologiques, tout en adoptant des comportements différents face aux cocktails de pressions. Leur association au sein d'un indice multi-métrique permet de discriminer la majorité des altérations sur la majorité des cours d'eau, et d'obtenir un indice qui répond à un gradient de pressions. L'indice identifie ainsi un niveau d'altération, exprimé en EQR 'Ecological Quality Ratio', avec 1 = note maximale obtenue pour la typologie concernée (état de « référence ») et 0 = pire note obtenue à l'échelle nationale (Mondy et al., 2012). Des pondérations sont ensuite appliquées en fonction de la typologie du cours d'eau pour évaluer un état biologique.

- La richesse taxonomique reflète notamment la qualité de l'eau et la diversité des mésohabitats présents à l'échelle de la station.
- L'indice de Shannon-Weaver exprime l'équilibre de la communauté d'invertébrés.
- L'ASPT repose sur la polluosensibilité des familles d'invertébrés identifiée.
- La fréquence des polyvoltins correspond à la fréquence relative des invertébrés ayant plusieurs cycles de vie par an. Les espèces polyvoltines ont plus de chance de survivre à des perturbations ponctuelles ou cycliques.
- Enfin, la fréquence des ovovivipares correspond à la fréquence relative des invertébrés ovovivipares. L'ovoviviparité est une forme de résistance.

#### L'outil diagnostic de l'I2M2

Basé sur 101 traits bio-écologiques et 73 indices (Mondy & Usseglio-Polatera, 2013), il permet, lorsqu'une altération de l'I2M2 est constatée, d'identifier les causes les plus probables de cette altération. Les résultats sont présentés sous la forme de diagramme radar.

L'exploitation des résultats I2M2 et de son outil diagnostic est affinée à travers les valeurs guides et intervalles de confiance déterminés par les travaux de notre pôle R&D (LABAT, 2021), basés sur près de 1600 analyses.





## II. INDICES DIATOMÉES

Le support « diatomées » permet d'évaluer la qualité de l'eau avec une faible intégration temporelle (quelques semaines à quelques mois).

La saisie sur le logiciel OMNIDIA (LECOINTE et al., 1993) permet de classer un grand nombre d'espèces selon leur sensibilité ou leur tolérance à la pollution, notamment organique et azotée. En fonction des altérations de la qualité des eaux, les diatomées réagissent par des variations qualitatives et quantitatives de leur peuplement.

#### > Indice Biologique Diatomées

L'IBD exprime la qualité biologique selon l'élément diatomées dans le cadre de la Directive Cadre Européenne sur l'Eau et la Loi française sur l'Eau. Il est basé sur la probabilité de présence d'un grand nombre de taxons dans sept classes de pollutions.

L'IBD s'exprime par une note comprise entre 1 et 20. Comme préconisé dans la norme en vigueur, le pourcentage des unités diatomiques prises en compte pour le calcul de l'IBD conditionne la qualification de la note :

- % > 50 % : note IBD fournie sans réserves sur le résultat,
- 25 < % ≤ 50 : note IBD fournie avec réserves sur le résultat,</li>
- % ≤ 25 % : note IBD non calculable.

#### > Indice de Polluosensibilité Spécifique

Non normalisé et plus ancien que l'IBD, l'IPS est reconnu internationalement et s'exprime par une note comprise entre 1 et 20 présentant une bonne corrélation avec l'IBD. C'est un indice basé sur l'abondance et la sensibilité spécifique d'un plus grand nombre de taxa que l'IBD. Il est mieux corrélé et plus sensible aux altérations la physico-chimie de l'eau que l'IBD. Ceci est notamment vrai pour deux paramètres, le pH et la conductivité, pour lesquels il est difficile de déterminer si les variations sont d'origine anthropique ou naturelle.

#### > Etude de la diversité et de l'équitabilité

• L'indice de Shannon et Weaver permet de caractériser la diversité d'un peuplement. Il se calcule comme suit:

$$H=-\sum [(ni/n) \log_2(ni/n)]$$

avec ni= nombre d'individu de l'espèce i ; n= nombre total d'individu compté ; ni/n= abondance relative de l'espèce i

Un milieu favorable à l'installation de nombreuses espèces correspond à un indice de diversité élevé.

• L'équitabilité est un indice qui permet de caractériser l'équilibre d'une population.

$$E = H / In(S)$$

avec H=indice de Shannon et Weaver et S nombre d'espèces

Ainsi, une équitabilité élevée (supérieure à 0,5) correspond à un peuplement équilibré.





## III. ÉVALUATION DE L'ÉTAT ÉCOLOGIQUE

Afin de répondre aux exigences de la DCE, les éléments biologiques, hydromorphologiques et physicochimiques sont utilisés pour évaluer l'état écologique des masses d'eau. La définition de l'état écologique d'une masse d'eau se réfère à deux arrêtés :

- > L'arrêté du 12/01/2010 (MINISTÈRE DE L'ÉCOLOGIE, DE L'ÉNERGIE, DU DÉVELOPPEMENT DURABLE ET DE L'AMÉNAGEMENT DU TERRITOIRE, 2010) permet de classer les masses d'eau sur la base d'un croisement de leur localisation géographiques (hydroécorégions ou HER) et de leur taille. Ce croisement de données permet d'attribuer à chaque masse d'eau un "code de type cours d'eau".
- > Pour chaque "code de type cours d'eau", l'arrêté du 27/07/2018 (MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE, 2018) relatif aux critères d'évaluation de l'état des eaux de surface définit les valeurs de référence, les modalités de calcul des notes EQR (Ecological Quality Ratio), les limites de classes d'état pour les éléments biologiques ainsi que les valeurs seuils de chaque paramètre physico-chimique.

La comparaison des conditions physico-chimiques et des valeurs des éléments de qualité biologique à ces limites de classes permet de définir l'état écologique de la masse d'eau qui se décline en cinq classes d'état (très bon à mauvais).

Pour les masses d'eau artificielles ou fortement modifiées, l'évaluation se fait selon quatre classes de **potentiel écologique**, les valeurs du bon potentiel tenant compte des caractéristiques de la masse d'eau.





#### III.1.1. Éléments de qualité biologique pour les cours d'eau

Concernant les éléments biologiques, le principe du paramètre déclassant est appliqué pour l'attribution d'une classe d'état biologique.

Les stations concernées par cette étude se situent dans l'HER 3 (Massif Central Sud). Les tableaux IV et VII cidessous présentent les valeurs de références et les limites de classes d'état pour la définition de la qualité biologique définis dans l'arrêté du 27 juillet 2018 :

Tableau IV : Valeurs de référence pour les éléments biologiques de l'HER 3

|                  |                 |                          | VALEURS DE | RÉFÈRENCE |
|------------------|-----------------|--------------------------|------------|-----------|
| Code masse d'eau | Cours d'eau     | Code Type de cours d'eau | I2M2       | IBD       |
| FRGR0173         | Le Fontbonne    | P3                       |            |           |
| FRGR0173         | la Charpassonne | Р3                       | 19         | 19 - 5    |
| FRGR0173         | La Loise        | Р3                       | 15         | 15-5      |
| FRGR0173         | la Loise        | Р3                       |            |           |
| FRGR1254         | le Garollet     | TP17                     | 16         | 17,4 - 1  |
| FRGR1291         | le Soleillant   | TP17                     | 10         | 17,4-1    |
| FRGR1321         | la Toranche     | TP3                      |            |           |
| FRGR1321         | Le Ternan       | TP3                      |            |           |
| FRGR1452         | le Gourtarou    | TP3                      |            |           |
| FRGR1452         | Le Chanasson    | TP3                      | 19         | 19 - 5    |
| FRGR1501         | les Odiberts    | TP3                      |            |           |
| FRGR1598         | le Bernand      | TP3                      |            |           |
| FRGR1641         | La Revoute      | TP3                      |            |           |

Tableau V : Limites de classe d'état pour les éléments biologiques de l'HER 14

|                  |                 |                          |                         | DES LIMITES DES CLASSES<br>TAT |
|------------------|-----------------|--------------------------|-------------------------|--------------------------------|
| Code masse d'eau | Cours d'eau     | Code Type de cours d'eau | I2M2                    | IBD                            |
| FRGR0173         | Le Fontbonne    | P3                       |                         |                                |
| FRGR0173         | la Charpassonne | P3                       |                         |                                |
| FRGR0173         | La Loise        | Р3                       |                         |                                |
| FRGR0173         | la Loise        | Р3                       |                         |                                |
| FRGR1254         | le Garollet     | TP17                     |                         |                                |
| FRGR1291         | le Soleillant   | TP17                     |                         |                                |
| FRGR1321         | la Toranche     | TP3                      | 0,665-0,443-0,295-0,148 | 0,94-0,78-0,55-0,3             |
| FRGR1321         | Le Ternan       | TP3                      |                         |                                |
| FRGR1452         | le Gourtarou    | TP3                      |                         |                                |
| FRGR1452         | Le Chanasson    | TP3                      |                         |                                |
| FRGR1501         | les Odiberts    | TP3                      |                         |                                |
| FRGR1598         | le Bernand      | TP3                      |                         |                                |
| FRGR1641         | La Revoute      | TP3                      |                         |                                |

Pour chacune des stations, la classe de qualité de l'indice biologique (très bon, bon, moyen, médiocre, mauvais) est représentée selon les codes couleur suivants :

<u>Tableau VI : Code couleur pour la classification de l'état des élèments biologiques</u>

| Mauvais | Médiocre | Moyen | Bon | Très bon |
|---------|----------|-------|-----|----------|
|         |          |       |     |          |





#### III.1.2. Éléments de qualité physico-chimique pour les cours d'eau

> Éléments Physico-chimiques généraux

Concernant les éléments de qualité physico-chimiques généraux (température, oxygène, pH et concentrations en nutriments), le principe du paramètre déclassant est appliqué pour l'attribution d'une classe d'état.

Ce principe est dérogé dans le cas de certains éléments bilan constitués de plusieurs paramètres comme l'élément « oxygène », par exemple, qui est composé des paramètres « oxygène dissous » et « taux de saturation en O2 ».

Dans le cas d'une chronique de données, l'évaluation se base sur les percentiles de rang (10 ou 90 selon l'élément physico-chimique). Le percentile 90 signifie que 90 % des valeurs de la série sont inférieures ou égale à cette valeur et le percentile 10 signifie que 10 % des valeurs de la série sont inférieures ou égales à cette valeur. Il est calculé de la manière suivante :

- classement des résultats par ordre décroissant et on attribue un rang à chaque valeur
- rang du résultat à retenir = arrondi (0,9 x na + 0,5) où na est le nombre d'analyses disponibles

Exemples: 11 analyses: Q90 = valeur de la 10e analyse; 21 analyses: Q90 = valeur de la 19e analyse; Etc.

Le tableau VII ci-dessous présente les limites de classes d'état définis dans l'arrêté du 28 juillet 2018 :

Tableau VII : Limites de classe d'état pour les éléments physico-chimiques généraux

|                                      | Très bon | Bon  | Moyen | Médiocre | Mauvais |
|--------------------------------------|----------|------|-------|----------|---------|
| Bilan de l'oxygène                   |          |      |       |          |         |
| Oxygène dissous (mg/l)               | 8        | 6    | 4     | 3        | <3      |
| Taux sat. O <sub>2</sub> dissous (%) | 90       | 70   | 50    | 30       | <30     |
| DBO5 (mg O <sub>2</sub> /I)          | 3        | 6    | 10    | 25       | >25     |
| Carbone organique dissous (mg/l)     | 5        | 7    | 10    | 15       | >15     |
| Température                          |          |      |       |          |         |
| Eaux salmonicoles (°C)               | 20       | 21,5 | 25    | 28       | >28     |
| Eaux cyprinicoles (°C)               | 24       | 25,5 | 27    | 28       | >28     |
| Nutriments                           |          |      |       |          |         |
| PO <sub>4</sub> 3- (mg/l)            | 0,1      | 0,5  | 1     | 2        | >2      |
| Phosphore total (mg/l)               | 0,05     | 0,2  | 0,5   | 1        | >1      |
| NH <sub>4</sub> (mg/l)               | 0,1      | 0,5  | 2     | 5        | >5      |
| NO <sub>2</sub> (mg/l)               | 0,1      | 0,3  | 0,5   | 1        | >1      |
| NO <sub>3</sub> (mg/l)               | 10       | 50   | *     | *        | *       |
| Acidification                        |          |      |       |          |         |
| pH min                               | 6,5      | 6    | 5,5   | 4,5      | <4,5    |
| pH max                               | 8,2      | 9    | 9,5   | 10       | >10     |
| Salinité                             |          |      |       |          |         |
| Conductivité (μS/cm)                 | *        | *    | *     | *        | *       |
| Chlorures (mg/l)                     | *        | *    | *     | *        | *       |
| Sulfates (mg/l)                      | *        | *    | *     | *        | *       |

<sup>\*</sup> les connaissances actuelles ne permettent pas de fixer des seuils fiables pour cette limite





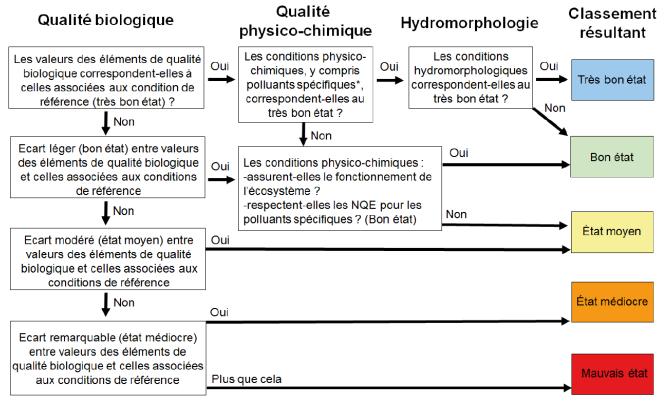
#### > Polluants spécifiques de l'état écologique

Concernant les polluants spécifiques de l'état écologique, le principe du paramètre déclassant est appliqué pour l'attribution d'une classe d'état. Une classe d'état est donc respectée pour les polluants spécifiques de l'état écologique lorsque l'ensemble des polluants spécifiques est classé au moins dans cette classe d'état ou en état inconnu.

Le tableau VIII ci-dessous présente la liste des polluants concernés et les normes de qualité environnementales (NQE) à prendre en compte dans l'évaluation de l'état écologique :

Tableau VIII : Normes de Qualité Environnementale (NQE) en μg/l

| Polluants spécifiques synthétiques |              |  |  |  |  |  |
|------------------------------------|--------------|--|--|--|--|--|
| Nicosulfuron                       | 0,035        |  |  |  |  |  |
| Chlortoluron                       | 0,1          |  |  |  |  |  |
| Isoxaflutole                       | 0,1          |  |  |  |  |  |
| Dimethenamid                       | 0,2          |  |  |  |  |  |
| 2,4-MCPA                           | 0,5          |  |  |  |  |  |
| 2,4,5-T                            | 0,8          |  |  |  |  |  |
| Tébuconazole                       | 1            |  |  |  |  |  |
| Captane                            | 1,7          |  |  |  |  |  |
| 2,4-D*                             | 2,2          |  |  |  |  |  |
| Mecoprop                           | 20,29        |  |  |  |  |  |
| Glyphosate                         | 28           |  |  |  |  |  |
| Bentazone                          | 70           |  |  |  |  |  |
| Fluroxypyr                         | 172          |  |  |  |  |  |
| AMPA                               | 452          |  |  |  |  |  |
| Triclopyr                          | 700          |  |  |  |  |  |
| Dichlorprop-P (sel de DMA)         | Non calculée |  |  |  |  |  |
| Metolachor                         | Non calculée |  |  |  |  |  |


<sup>\*</sup> Polluant pour lequel la norme ne s'applique pas sur l'ensemble des bassins





#### III.1.3. Règles d'agrégation entre les éléments de qualité

La comparaison des conditions physico-chimiques et des valeurs des éléments de qualité biologique à ces limites de classes permet de définir l'état écologique de la masse d'eau qui se décline en cinq classes d'état (très bon à mauvais) et est établi en appliquant les règles d'agrégation suivantes :



<u>Figure 1</u> : Règles d'agrégation des éléments de qualité de classification écologique (Ministère de la transition écologique et solidaire, 2019)

- > si l'état écologique est déclassé par au moins un élément biologique, indépendamment des résultats physico-chimiques, l'état écologique obtenu est équivalent à l'état de l'élément biologique le plus déclassant,
- > si l'ensemble des éléments biologiques sont classés « bon » ou « très bon », mais que l'état écologique est déclassé par plus d'un paramètre physico-chimique, ou qu'au moins un des seuils définis pour les polluants spécifiques de l'état écologique est dépassé, l'état écologique obtenu est déclassé en « état moyen » mais pas au-delà. En effet, les éléments physico-chimiques interviennent uniquement comme facteurs explicatifs des conditions biologiques (sauf en cas d'absence d'élèments de qualité biologique)
- > Aucun indicateur pertinent n'est pour le moment disponible pour les éléments hydromorphologiques.

Afin d'accroître la fiabilité de l'évaluation obtenue pour chaque élément de qualité ou paramètre de l'état écologique, il est nécessaire d'avoir recours à un nombre suffisant de données. Ainsi, dans l'objectif de procéder à une évaluation actualisée de l'état des masses d'eau, tout en tenant compte de la variabilité naturelle des milieux et de la disponibilité des données, le guide technique relatif à l'évaluation de l'état des eaux de surface continentales préconise d'utiliser les données de surveillance des trois dernières années pour les cours d'eau.

Faute d'une chronique de données suffisante, l'état écologique évalué dans ce rapport est donné à titre indicatif.





## I. LES STATIONS ÉTUDIÉES

Dans le cadre du programme de suivi de la qualité, 15 stations de suivi ont été positionnées afin d'évaluer l'état de l'ensemble des bassins versants présents sur le territoire du SMAELT.

La Figure 2 permet de visualiser la localisation des stations.

Pour la localisation et les descriptions des stations, on se reportera aux rapports d'essais en annexe. Les prélèvements ont été réalisés sur les périodes suivantes :

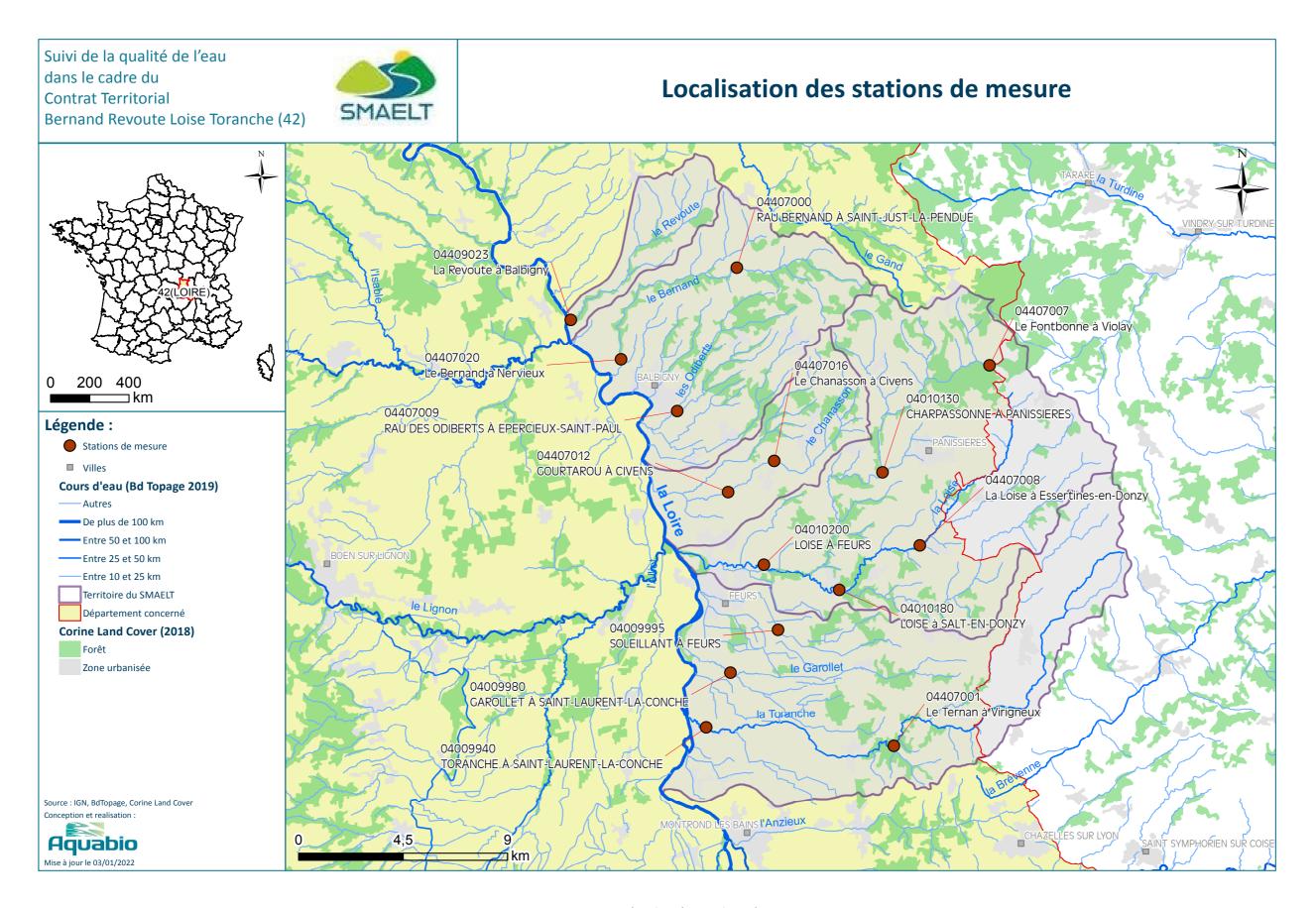
- 6 Campagnes de physicochimie « classiques » : Janvier, Mars, Juin, Aout, Septembre, et Octobre
- 6 Campagnes de pesticides consécutive à des périodes de précipitation : Mars, Avril, Mai, Juin, Septembre , Octobre et Novembre
- 1 Campagne hydrobiologique (Diatomées et Invertébrés) réalisée du 26/04/21 au 29/04/21

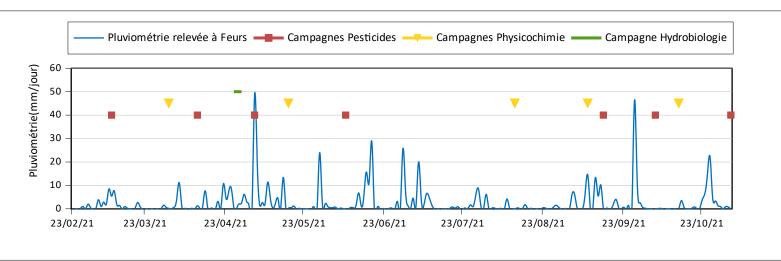
Le tableau récapitule les types de suivi réalisé par station :

Tableau IX: Récapitulatif des types de suivi réalisé par station

|                                    | PHYSICO       | O-CHIMIE    | DIATOMÉES | INVERTÉBRÉS |
|------------------------------------|---------------|-------------|-----------|-------------|
|                                    | Physicochimie | Pesticides  |           |             |
| Toranche à Saint-Laurent la Conche | 6 Campagnes   | 6 Campagnes | 29/04/21  | 29/04/21    |
| Garollet à Saint-Laurent la Conche | -             | 6 Campagnes | 29/04/21  | 29/04/21    |
| Soleillant à Feurs                 | -             | 6 Campagnes | 28/04/21  | 28/04/21    |
| Charpassonne à Panissières         | -             | 6 Campagnes | 27/04/21  | 27/04/21    |
| Loise à Salt en Donzy              | 6 Campagnes   | 6 Campagnes | 28/04/21  | 28/04/21    |
| Loise à Feurs                      | -             | 6 Campagnes | 28/04/21  | 28/04/21    |
| Rau Bernand à Saint-Just la Pendue | 6 Campagnes   | 6 Campagnes | 26/04/21  | 26/04/21    |
| Ternan à Virigneux                 | 6 Campagnes   | 6 Campagnes | 29/04/21  | 29/04/21    |
| Fontbonne à Violay                 | 6 Campagnes   | 6 Campagnes | 28/04/21  | 28/04/21    |
| Loise à Essertines en Donzy        | 6 Campagnes   | 6 Campagnes | 28/04/21  | 28/04/21    |
| Rau des Odiberts à Epercieux       | -             | 6 Campagnes | 27/04/21  | 27/04/21    |
| Gourtarou à Civens                 | -             | 6 Campagnes | 27/04/21  | 27/04/21    |
| Chanasson à Civens                 | 6 Campagnes   | 6 Campagnes | 27/04/21  | 27/04/21    |
| Bernand à Nervieux                 | 6 Campagnes   | 6 Campagnes | 27/04/21  | 27/04/21    |







Figure 2 : Localisation des stations de suivi





#### II. HYDROLOGIE

La station météorologique de Feurs est la plus proche pour évaluer les variations de pluviométrie sur le bassin versant. Au cours de chaque campagne de prélèvement, des mesures précises de débit ont été réalisées, les résultats obtenus se trouvent sur chaque fiche station.



<u>Figure 3</u>: Pluviométrie journalière relevée à Feurs sur l'année 2021 (source : Imageau)

Les campagnes Pesticides ont été réalisées après des périodes de pluie importante et suffisante pour procéder au phénomène de lessivage des sols. Les campagnes de physico-chimie classique ont été réalisées par temps sec. Un récapitulatif des cumuls de pluie des 48 dernières heures pour chaque campagne est présent sur les fiches stations dans le tableur « Pesticides »





# RÉSULTATS ET INTERPRÉTATION DES ANALYSES

## I. RÉSULTATS DES ANALYSES

Les résultats des analyses physico-chimiques et hydrobiologiques sont présentés dans le tableau X et dans les fiches stations présentes en Annexes





## Tableau X : Résultats des analyses hydrobiologiques du territoire du SMAELT (avril 2021)

|                                | TORANCHE À<br>SAINT-LAURENT-<br>LA-CONCHE | GAROLLET À<br>SAINT-LAURENT-<br>LA-CONCHE | SOLEILLANT À<br>FEURS      | CHARPASSONNE<br>À PANISSIERES | LOISE à SALT-EN-<br>DONZY  | LOISE À FEURS              | RAU BERNAND<br>À SAINT-JUST-<br>LA-PENDUE | Le Ternan à<br>Virigneux   | Le Fontbonne à<br>Violay   | La Loise à<br>Essertines-en-<br>Donzy | Rau des<br>Odiberts à<br>Epercieux-<br>Saint-Paul | Gourtarou à<br>Civens      | Le Chanasson à<br>Civens   | Le Bernand à<br>Nervieux   | La Revoute à<br>Balbigny   |
|--------------------------------|-------------------------------------------|-------------------------------------------|----------------------------|-------------------------------|----------------------------|----------------------------|-------------------------------------------|----------------------------|----------------------------|---------------------------------------|---------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Numéro d'essai<br>Date         | RCS212-00492<br>29/04/2021                | RCS212-00493<br>29/04/2021                | RCS212-00494<br>28/04/2021 | RCS212-00495<br>27/04/2021    | RCS212-00496<br>28/04/2021 | RCS212-00497<br>28/04/2021 | RCS212-00498<br>26/04/2021                | RCS212-00499<br>29/04/2021 | RCS212-00500<br>28/04/2021 | RCS212-00501<br>28/04/2021            | RCS212-00502<br>27/04/2021                        | RCS212-00503<br>27/04/2021 | RCS212-00504<br>27/04/2021 | RCS212-00506<br>27/04/2021 | RCS212-00505<br>26/04/2021 |
| ASPT                           | 0,30530                                   | 0,44510                                   | 0,24050                    | 0,70840                       | 0,49570                    | 0,20010                    | 0,64360                                   | 0,86600                    | 0,30810                    | 0,49970                               | 0,31590                                           | 0,00540                    | 0,05120                    | 0,67560                    | 0,22210                    |
| Indice Shannon                 | 0,58310                                   | 0,46690                                   | 0,03030                    | 0,74370                       | 0,91500                    | 0,87330                    | 0,49960                                   | 0,70840                    | 0,83630                    | 0,85670                               | 0,61560                                           | 0,60030                    | 0,64160                    | 0,75240                    | 0,77110                    |
| Ovoviviparité                  | 0,22180                                   | 0,49480                                   | 0,49910                    | 0,69410                       | 0,75030                    | 0,60720                    | 0,37880                                   | 0,62310                    | 0,54020                    | 0,47120                               | 0,31750                                           | 0,36850                    | 0,51400                    | 0,52780                    | 0,27850                    |
| Polyvoltinisme                 | 0,17070                                   | 0,53610                                   | 0,32710                    | 0,55730                       | 0,77870                    | 0,70610                    | 0,36710                                   | 0,77090                    | 0,62840                    | 0,51870                               | 0,39180                                           | 0,43690                    | 0,32030                    | 0,51950                    | 0,32600                    |
| Richesse                       | 0,30950                                   | 0,21050                                   | 0,00000                    | 0,40220                       | 0,42460                    | 0,69270                    | 0,19050                                   | 0,23810                    | 0,37990                    | 0,40220                               | 0,19050                                           | 0,11900                    | 0,47620                    | 0,21430                    | 0,19050                    |
| I2M2                           | 0,31800                                   | 0,44470                                   | 0,23410                    | 0,63060                       | 0,69820                    | 0,63210                    | 0,41840                                   | 0,65610                    | 0,56050                    | 0,56090                               | 0,37970                                           | 0,33370                    | 0,41330                    | 0,55130                    | 0,37430                    |
| Etat biologique                | Moyen                                     | Bon                                       | Médiocre                   | Bon                           | Très bon                   | Bon                        | Moyen                                     | Bon                        | Bon                        | Bon                                   | Moyen                                             | Moyen                      | Moyen                      | Bon                        | Moyen                      |
|                                |                                           |                                           |                            |                               |                            | [                          | DIATOMEES                                 |                            |                            |                                       |                                                   |                            |                            |                            |                            |
| Numéro d'essai<br>Date         | IBD212-00507<br>29/04/2021                | IBD212-00508<br>29/04/2021                | IBD212-00509<br>28/04/2021 | IBD212-00510<br>27/04/2021    | IBD212-00511<br>28/04/2021 | IBD212-00512<br>28/04/2021 | IBD212-00513<br>26/04/2021                | IBD212-00514<br>29/04/2021 | IBD212-00515<br>28/04/2021 | IBD212-00516<br>28/04/2021            | IBD212-00517<br>27/04/2021                        | IBD212-00518<br>27/04/2021 | IBD212-00519<br>27/04/2021 | IBD212-00521<br>27/04/2021 | IBD212-00520<br>26/04/2021 |
| Effectif                       | 403                                       | 408                                       | 408                        | 408                           | 400                        | 404                        | 402                                       | 405                        | 402                        | 405                                   | 405                                               | 403                        | 405                        | 403                        | 402                        |
| Richesse spécifique            | 27                                        | 27                                        | 53                         | 32                            | 31                         | 26                         | 26                                        | 33                         | 21                         | 24                                    | 25                                                | 24                         | 19                         | 37                         | 26                         |
| Indice de Shannon<br>weaver    | 3,19                                      | 3,55                                      | 4,4                        | 3,98                          | 4,05                       | 3,35                       | 3,34                                      | 3,41                       | 2,62                       | 3,03                                  | 3,72                                              | 3,36                       | 2,92                       | 3,45                       | 2,92                       |
| Equitabilité                   | 0,67                                      | 0,75                                      | 0,77                       | 0,8                           | 0,82                       | 0,71                       | 0,71                                      | 0,68                       | 0,6                        | 0,66                                  | 0,8                                               | 0,73                       | 0,69                       | 0,66                       | 0,62                       |
| % Diatomées contributives (DC) | 100                                       | 100                                       | 94                         | 98                            | 100                        | 100                        | 99                                        | 99                         | 100                        | 100                                   | 100                                               | 100                        | 100                        | 96                         | 100                        |
| Note IPS                       | 12,1                                      | 12,2                                      | 11,9                       | 11,7                          | 13,8                       | 11,5                       | 16                                        | 15,6                       | 16                         | 11,3                                  | 13,8                                              | 12,1                       | 11,9                       | 16,4                       | 14,8                       |
| Note IBD                       | 11,5                                      | 11,0                                      | 12,0                       | 11,9                          | 13,6                       | 10,6                       | 15,2                                      | 15,1                       | 16,2                       | 11,0                                  | 13,3                                              | 11,9                       | 12,3                       | 16,9                       | 16,2                       |
| Note en EQR                    | 0,46                                      | 0,61                                      | 0,67                       | 0,49                          | 0,61                       | 0,40                       | 0,73                                      | 0,72                       | 0,80                       | 0,43                                  | 0,59                                              | 0,49                       | 0,52                       | 0,85                       | 0,80                       |
| Etat biologique                | Médiocre                                  | Moyen                                     | Moyen                      | Médiocre                      | Moyen                      | Médiocre                   | Moyen                                     | Moyen                      | Bon                        | Médiocre                              | Moyen                                             | Médiocre                   | Médiocre                   | Bon                        | Bon                        |
|                                |                                           |                                           |                            |                               |                            | ETAT BIOLO                 | OGIQUE (arrête                            | é 2018)                    |                            |                                       |                                                   |                            |                            |                            |                            |
|                                | Médiocre                                  | Moyen                                     | Médiocre                   | Médiocre                      | Moyen                      | Médiocre                   | Moyen                                     | Moyen                      | Bon                        | Médiocre                              | Moyen                                             | Médiocre                   | Médiocre                   | Bon                        | Moyen                      |
|                                |                                           |                                           |                            |                               |                            | ETAT P                     | HYSICOCHIMIC                              | QUE                        |                            |                                       |                                                   |                            |                            |                            |                            |
|                                | Moyen                                     | Bon                                       | Moyen                      | Bon                           | Moyen                      | Bon                        | Bon                                       | Moyen                      | Bon                        | Moyen                                 | Bon                                               | Bon                        | Médiocre                   | Médiocre                   | Moyen                      |
|                                |                                           |                                           |                            |                               |                            | ETA                        | T ECOLOGIQUI                              |                            |                            |                                       |                                                   |                            |                            |                            |                            |
|                                | Médiocre                                  | Moyen                                     | Médiocre                   | Médiocre                      | Moyen                      | Médiocre                   | Moyen                                     | Moyen                      | Bon                        | Médiocre                              | Moyen                                             | Médiocre                   | Médiocre                   | Médiocre                   | Moyen                      |





Le Tableau XI ci-dessous permet l'évaluation de l'état écologique au regard des éléments physico-chimiques et biologiques :

Tableau XI: Évaluation de l'état écologique des stations suivis (2021)

|                                            | PHYSICO-CHIMIE | DIATOMÉES | INVERTÉBRÉS | ÉTAT ÉCOLOGIQUE<br>RETENU |
|--------------------------------------------|----------------|-----------|-------------|---------------------------|
| TORANCHE À SAINT-<br>LAURENT-LA-CONCHE     | Moyen          | Médiocre  | Moyen       | Médiocre                  |
| GAROLLET À SAINT-<br>LAURENT-LA-CONCHE     | Bon            | Moyen     | Bon         | Moyen                     |
| SOLEILLANT À FEURS                         | Moyen          | Moyen     | Médiocre    | Médiocre                  |
| CHARPASSONNE À<br>PANISSIERES              | Bon            | Médiocre  | Bon         | Médiocre                  |
| LOISE à SALT-EN-DONZY                      | Moyen          | Moyen     | Très bon    | Moyen                     |
| LOISE À FEURS                              | Bon            | Médiocre  | Bon         | Médiocre                  |
| RAU BERNAND À SAINT-<br>JUST-LA-PENDUE     | Bon            | Moyen     | Moyen       | Moyen                     |
| Le Ternan à Virigneux                      | Moyen          | Moyen     | Bon         | Moyen                     |
| Le Fontbonne à Violay                      | Bon            | Bon       | Bon         | Bon                       |
| La Loise à Essertines-en-<br>Donzy         | Moyen          | Médiocre  | Bon         | Médiocre                  |
| Rau des Odiberts à<br>Epercieux-Saint-Paul | Bon            | Moyen     | Moyen       | Moyen                     |
| Gourtarou à Civens                         | Bon            | Médiocre  | Moyen       | Médiocre                  |
| Le Chanasson à Civens                      | Médiocre       | Médiocre  | Moyen       | Médiocre                  |
| Le Bernand à Nervieux                      | Médiocre       | Bon       | Bon         | Médiocre                  |
| La Revoute à Balbigny                      | Moyen          | Bon       | Moyen       | Moyen                     |





## **CONCLUSION**

Au vu des analyses hydrobiologiques et physicochimiques effectuées en 2021 sur le territoire du SMAELT, nous aboutissons aux conclusions suivantes :

- Une seule station présente un état écologique compatible avec les exigences de la DCE, le Fontbonne à Violay
- > La majorité des stations présentent un état écologique médiocre, le paramètre hydrobiologie « diatomée » étant le plus déclassant.
- > Si la présence de pesticides est relevée sur l'ensemble des stations, aucune campagne ne signale de concentration supérieure à la réglementation mise en place dans le cadre de la DCE.

On note cependant sur deux stations la présence d'herbicides dont l'usage est interdit depuis 2003, le Dichloroprop et le 2,4,5 T.





# RÉFÉRENCES BIBLIOGRAPHIQUES

- —, 2003b. NF EN 14011 Qualité de l'eau Échantillonnage des poissons à l'électricité. : 21.
- —., 2007. NF EN ISO 5667-1 Qualité de l'eau Échantillonnage Partie 1 : Lignes directrices pour la conception des programmes et des techniques d'échantillonnage. : 44.
- —., 2016a. NF EN ISO 5667-6 Qualité de l'eau Échantillonnage Partie 6 : Lignes directrices pour l'échantillonnage des rivières et des cours d'eau. : 44.
- —..., 2016b. NFT90-333 Qualité de l'eau T90-333. La Plaine Saint-Denis : AFNOR, 41 p.
- —., 2016c. NF T90-354 Qualité de l'eau Échantillonnage, traitement et analyse de Diatomées benthiques en cours d'eau et canaux. : 121.
- —., 2017. FD T90-733 Qualité de l'eau Guide d'application de la norme NF T 90-333:2016 (Prélèvement des macro-invertébrés aquatiques en rivières peu profondes). AFNOR, 66 p.
- —., 2018. NF EN ISO 5667-3 Qualité de l'eau Échantillonnage Partie 3 : Conservation et manipulation des échantillons d'eau. : 58.
- —., 2019a. FD T90-523-1 Qualité de l'eau Guide d'échantillonnage pour le suivi de la qualité des eaux dans l'environnement Partie 1 : Échantillonnage d'eau en rivières et canaux. : 46.
- —., 2019b. XP T90-337 Qualité de l'eau Prélèvements des macro-invertébrés aquatiques en rivières profondes et canaux. AFNOR, 58 p.
- —., 2020. NF T90-388 Qualité de l'eau Analyse d'échantillons contenant des macro-invertébrés de cours d'eau, canaux et plans d'eau. .
- AQUAREF., 2017. Opérations d'échantillonnage d'eau en cours d'eau dans le cadre des programmes de surveillance DCE Recommandations techniques., 29 p.
- Krammer K., Lange-Bertalot H. & Bertalot H. L.-., 1986. Naviculaceae. Stuttgart New York: Fischer, 876 p.
- Krammer K., Lange-Bertalot H. & Krammer K., 1991. Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis. 1. Aufl., 436 p.
- Krammer K., Lange-Bertalot H., Pascher A., Ettl H., Büdel B. & Krammer K., 1988. Bacillariaceae, Epithemiaceae, Surirellaceae. Jena: G. Fischer, 596 p.
- LABAT F., 2021. Proposition de nouvelles valeurs guides provisoires et niveaux de confiance associés pour l'interprétation de l'outil diagnostique invertébrés. Cournon d'Auvergne : Aquabio, 15 p.
- Lange-Bertalot H., Hofmann G., Werum M., Cantonati M. & Kelly M., 2017. Freshwater benthic diatoms of Central Europe: over 800 common species used in ecological assessment. English edition with updated taxonomy and added species., Schmitten-Oberreifenberg, Germany: Koeltz Botanical Books, 942 p.
- Lecointe C., Coste M. & Prygiel J., 1993. Omnidia: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia, **269-270** (1): 509-513 doi: 10.1007/BF00028048.
- MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE., 2018. Arrêté du 27 juillet 2018 modifiant l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement. : 52.
- —., 2019. Guide technique relatif à l'évaluation de l'état des eaux de surface continentales (cours d'eau, canaux, plans d'eau).
- Ministère de l'écologie, de l'énergie, du développement durable et de l'aménagement du territoire., 2010. Arrêté du 12 janvier 2010 relatif aux méthodes et aux critères à mettre en oeuvre pour délimiter et classer les masses d'eau et dresser l'état des lieux prévu à l'article R. 212-3 du code de l'environnement. .
- Mondy C. P. & Usseglio-Polatera P., 2013. Using conditional tree forests and life history traits to assess specific risks of stream degradation under multiple pressure scenario. *Science of The Total Environment*, **461-462**: 750-760 doi: 10.1016/j.scitotenv.2013.05.072.



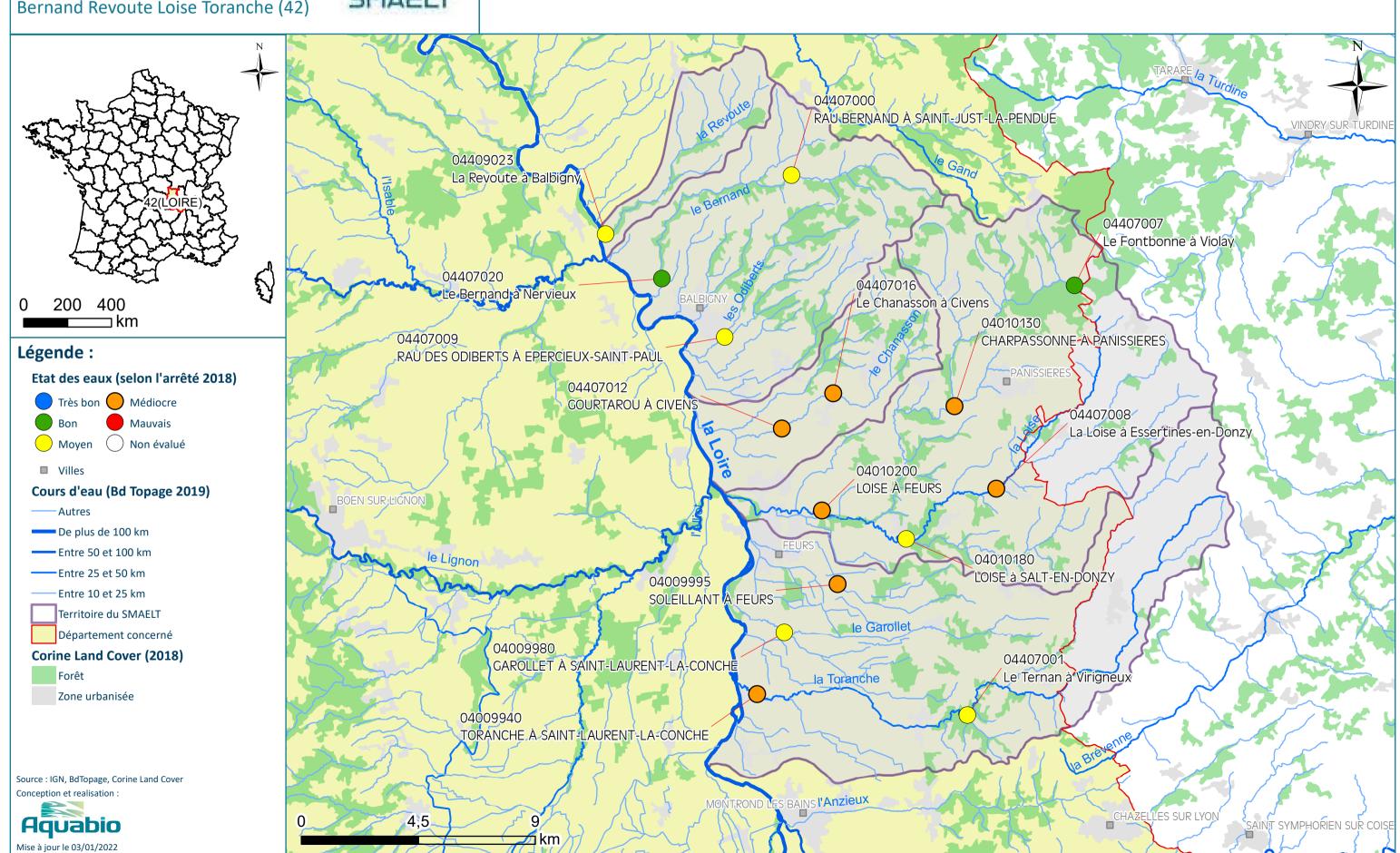


Mondy C. P., VILLENEUVE B., ARCHAIMBAULT V. & USSEGLIO-POLATERA P., 2012. — A new macroinvertebrate-based multimetric index (I2M2) to evaluate ecological quality of French wadeable streams fulfilling the WFD demands: A taxonomical and trait approach. *Ecological Indicators*, **18**: 452-467 doi: 10.1016/j.ecolind.2011.12.013.

Van de Weyer K., 2003. – Kartieranleitung zur Erfassung undBewertung der aquatischen Makrophytender Fließgewässer in NRW gemäß denVorgaben der EU-Wasser-Rahmen-Richtlinie. Berlin, New York: Walter de Gruyter, 61 p. doi: 10.1515/9783598440830.178.

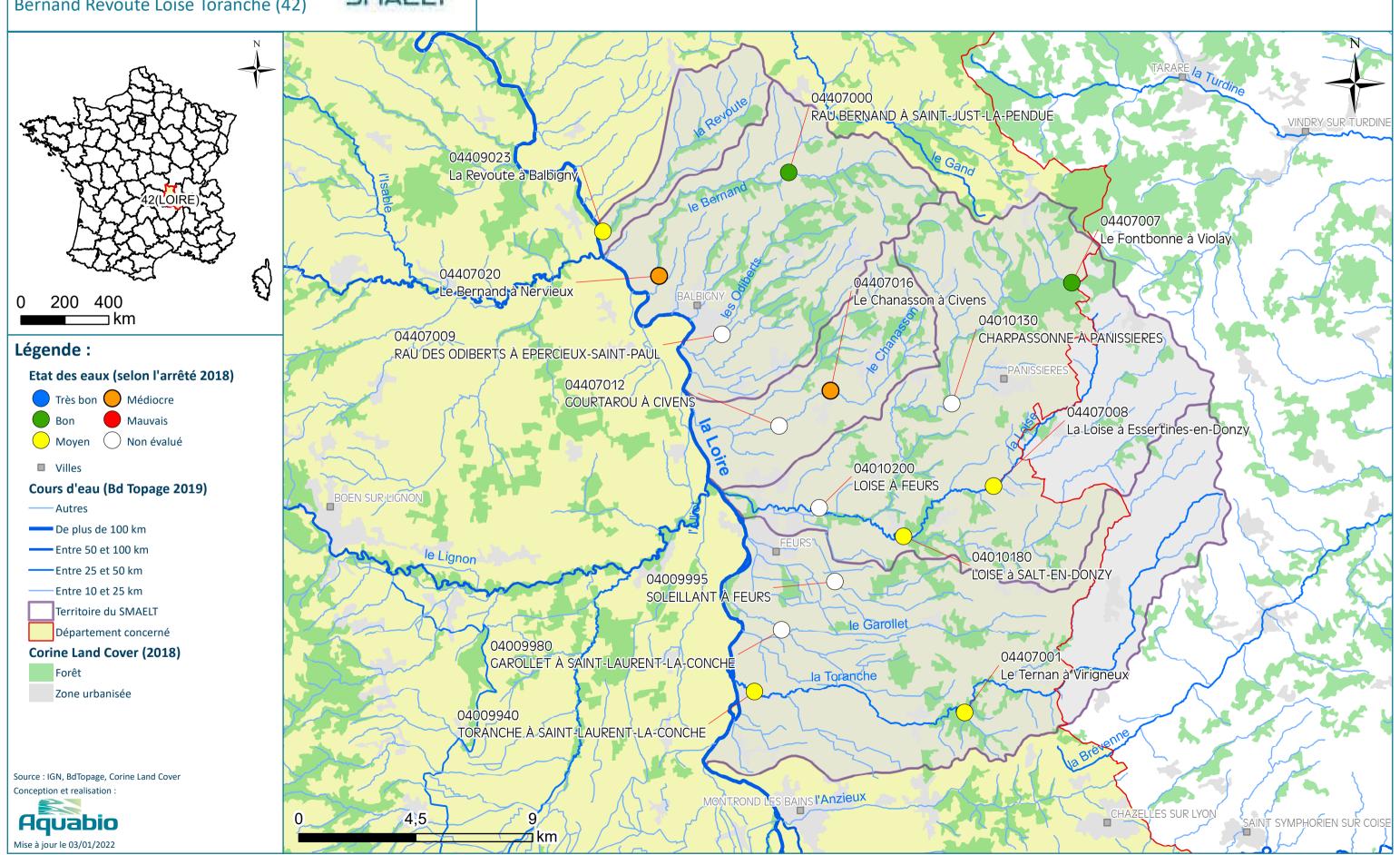





# Synthèse cartographique

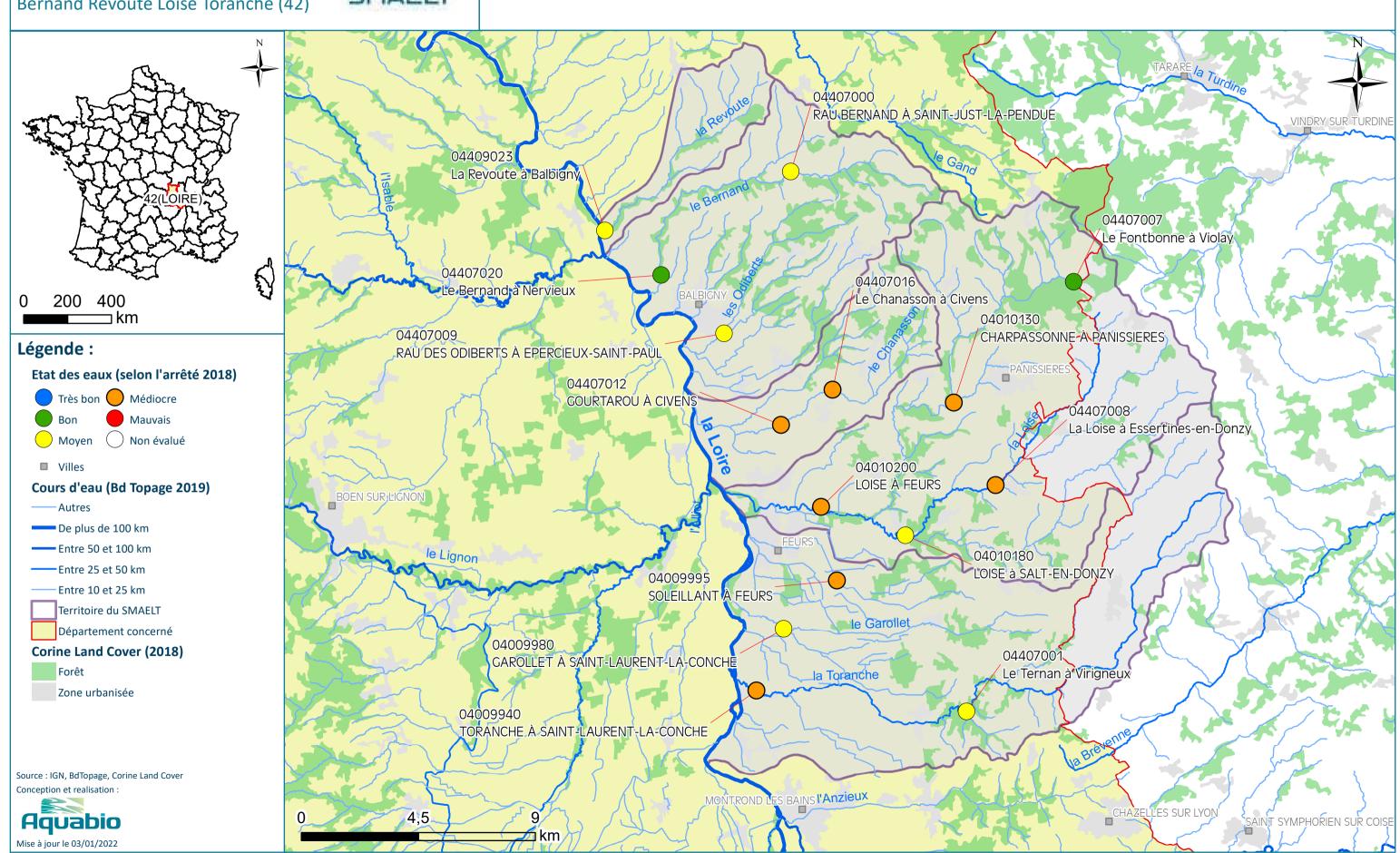







# Etat écologique selon les éléments biologiques






# Etat écologique selon les paramètres physico-chimiques





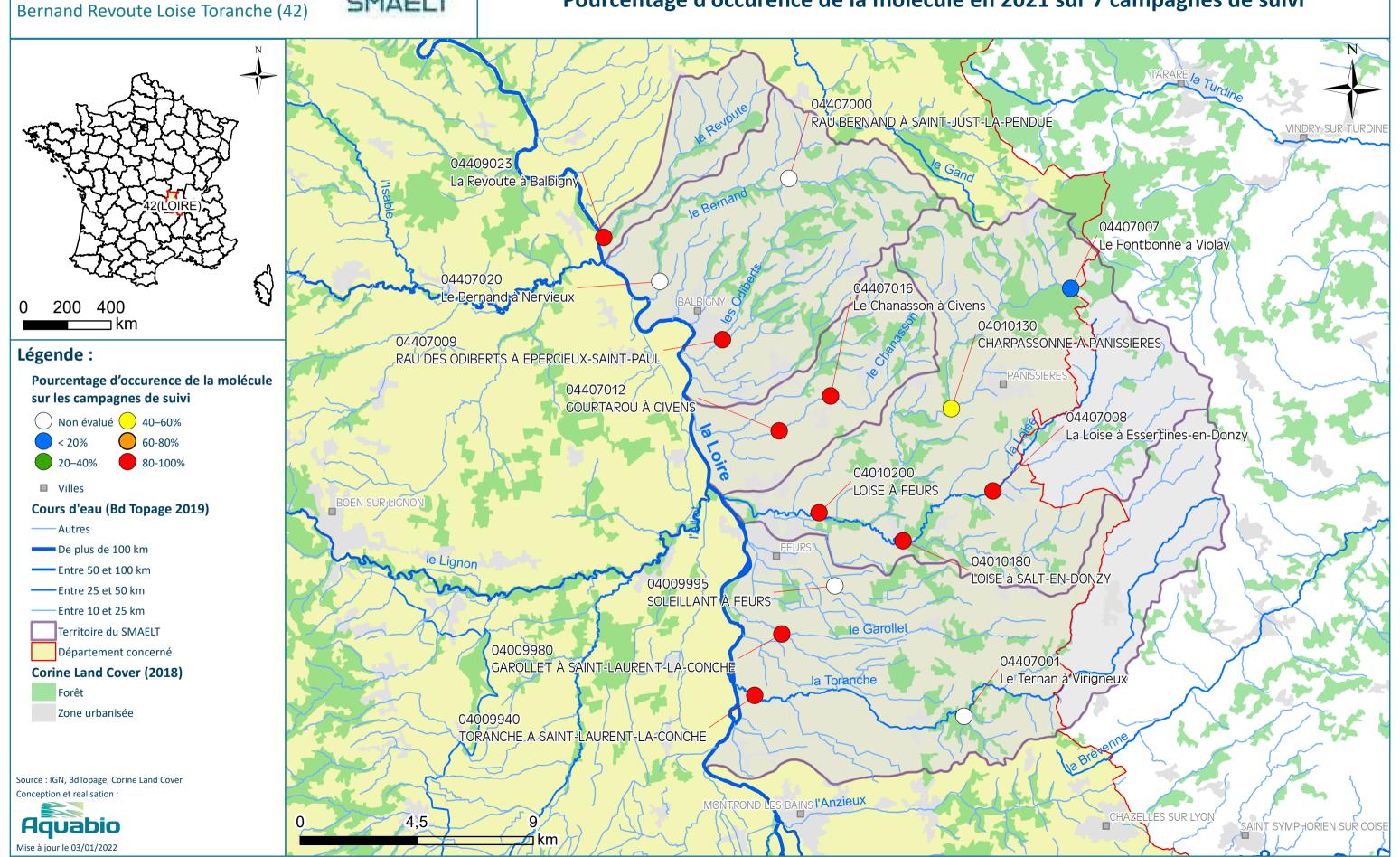
# Etat écologique 2021 du réseau de suivi





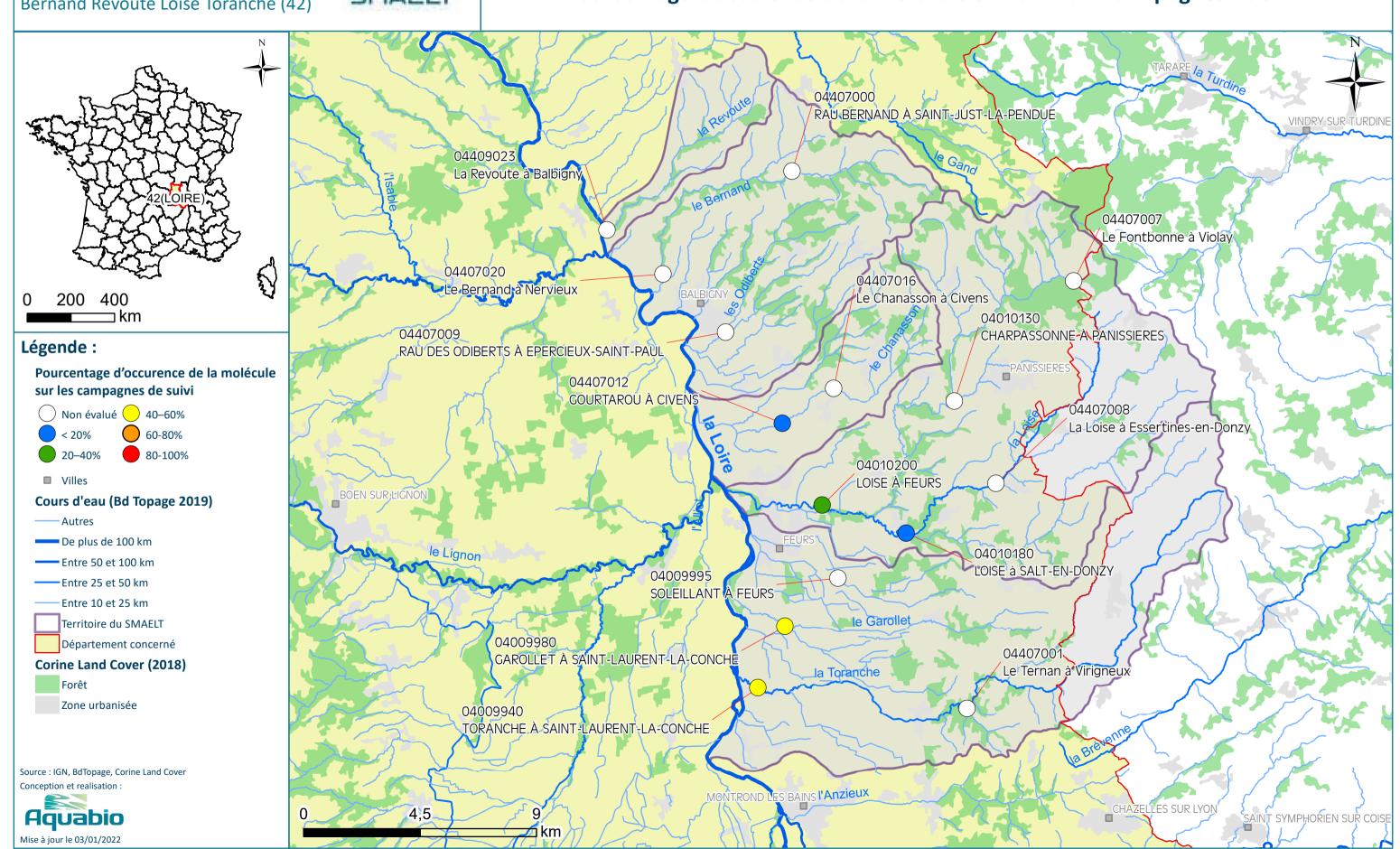

# Etat écologique retenu de 2019 à 2021





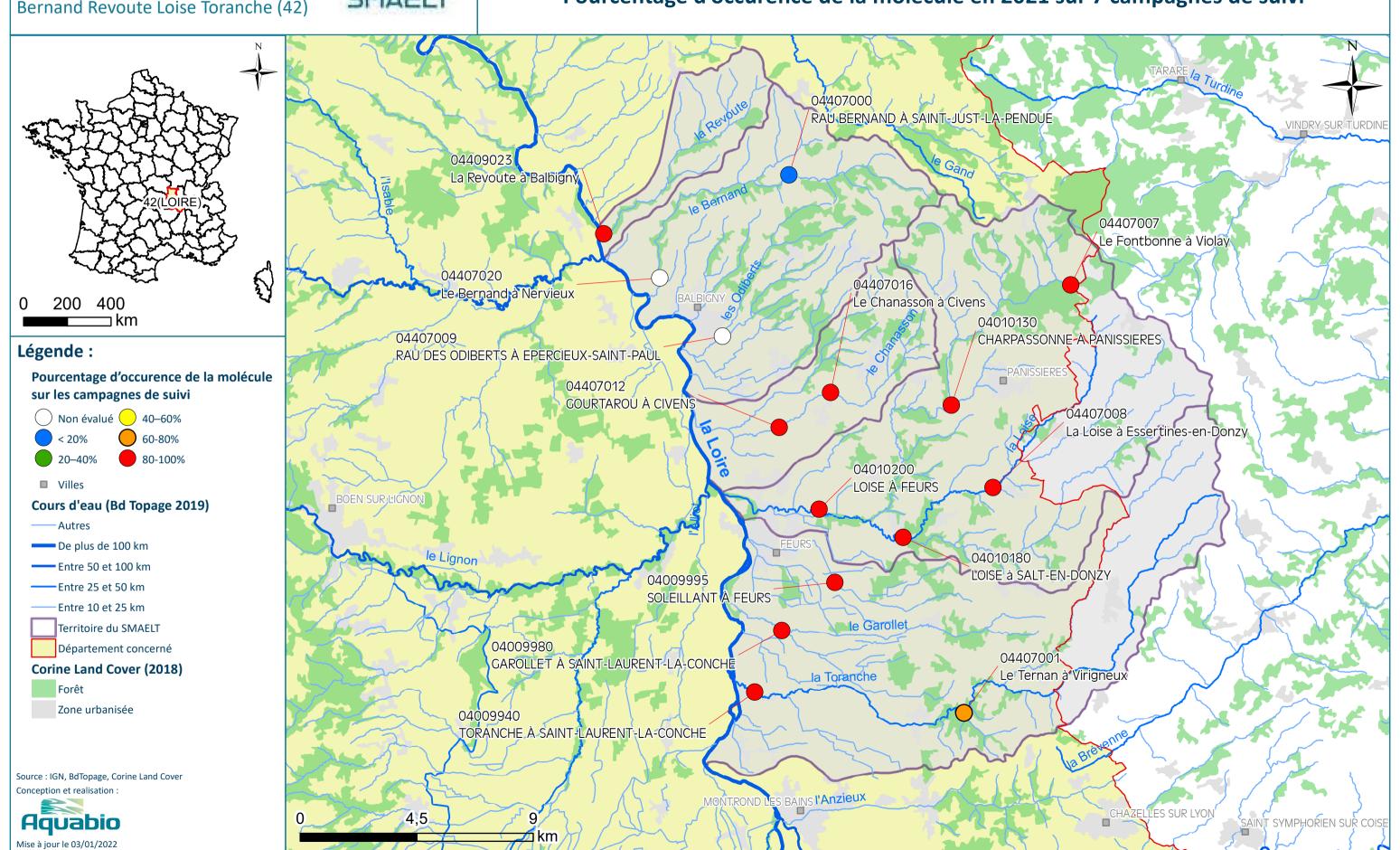

# Pesticides (Glyphosate) : Pourcentage d'occurence de la molécule en 2021 sur 7 campagnes de suivi





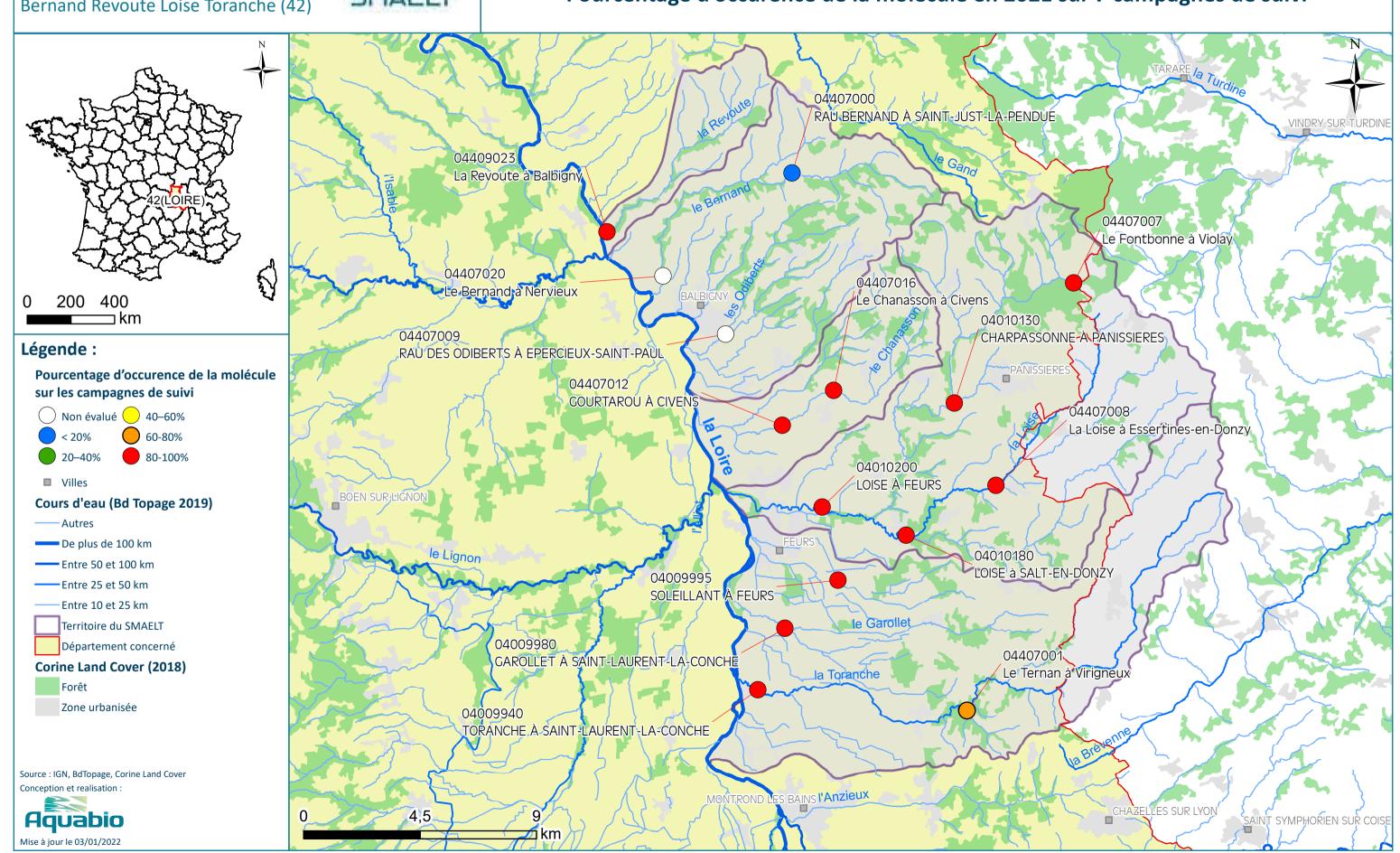

# Pesticides (AMPA) : Pourcentage d'occurence de la molécule en 2021 sur 7 campagnes de suivi






# Pesticides (Métolachlore (+ S Métolachlore)) : Pourcentage d'occurence de la molécule en 2021 sur 7 campagnes de suivi






# Pesticides (Métolachlore ESA) : Pourcentage d'occurence de la molécule en 2021 sur 7 campagnes de suivi





# Pesticides (Métolachlore OXA) : Pourcentage d'occurence de la molécule en 2021 sur 7 campagnes de suivi



# Fiches stations









347

346

les Pins

l'Étang du Milieu

344

les Ambreux

## **TORANCHE À SAINT-LAURENT-LA-CONCHE (04009940)**

#### Caractéristiques de la station

☐ Invertebres
♦ Macrophytes

▲ Diatomees

Oligochetes

Laffont

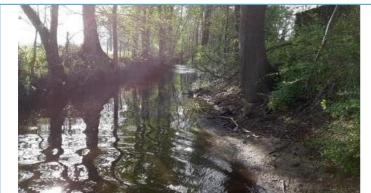
St-Laurent--la-Conche

Bel-Air

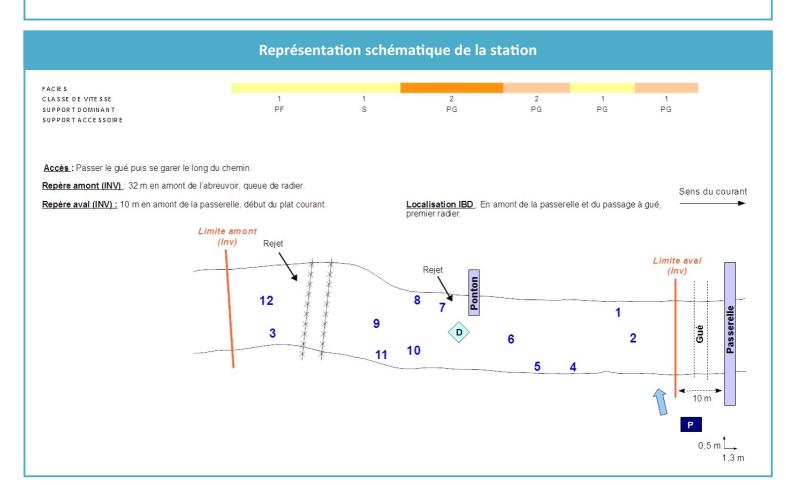
Poissons

Nom du cours d'eau concerné: la Toranche

Code masse d'eau: FRGR1321


Nom de la masse d'eau: LA TORANCHE ET SES AFFLUENTS DEPUIS

LA SOURCE JUSQU'A SA CONFLUENCE AVEC LA LOIRE


Hydroécorégions: 17 DEPRESSIONS SEDIMENTAIRES (HER2: 45)

Type de la masse d'eau: TP3

| Coordonnées de la station en RGF93 / Lambert-93 (2154) |              |              |
|--------------------------------------------------------|--------------|--------------|
| X (longitude)                                          | Y (latitude) | Altitude (m) |
| 794649                                                 | 6510242      | 340          |



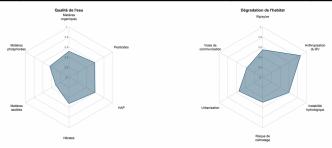
Vue globale Localisation de la station





# **TORANCHE À SAINT-LAURENT-LA-CONCHE (04009940)**

## **PHYSICO-CHIMIE**


|                 | Paramètres physico-c              | nimiques ge | eneraux (Ar | rete du 27/ | 0//2018)   |            |           |
|-----------------|-----------------------------------|-------------|-------------|-------------|------------|------------|-----------|
|                 | Année                             | 21/01/2021  | 30/03/2021  | 15/06/2021  | 10/08/2021 | 07/09/2021 | 12/10/202 |
| ∕lesure de débi | t (m3/s)                          |             |             |             |            |            |           |
|                 | Oxygène dissous (mg/l)            | 11,60       | 11,60       | 8,10        | 9,20       | 7,50       | 9,10      |
| Bilan de        | Taux sat. O2 dissous (%)          | 99          | 101         | 87          | 95         | 80         | 90        |
| l'oxygène       | DBO5 (mg O2/I)                    | 1,50        | 0,70        | 1,40        | 1,30       | 0,90       | 1,30      |
|                 | Carbone organique dissous (mg/l)  | 6,80        | 5,50        | 6,30        | 8,30       | 6,50       | 6,60      |
| Température     | Température                       | 6,20        | 7,30        | 17,30       | 15,40      | 16,20      | 10,10     |
|                 | Orthophosphates (mg/l)            | 0,23        | 0,11        | 0,68        | 0,42       | 0,64       | 0,47      |
|                 | Phosphore total (mg/l)            | 0,12        | 0,05        | 0,24        | 0,18       | 0,21       | 0,17      |
| Nutriments      | Ammonium (mg/l)                   | 0,06        | 0,05        | 0,05        | 0,05       | 0,05       | 0,17      |
|                 | Nitrites (mg/l)                   | 0,06        | 0,10        | 0,21        | 0,07       | 0,04       | 0,13      |
|                 | Nitrates (mg/I)                   | 52,00       | 16,00       | 10,00       | 14,00      | 8,30       | 20,00     |
| Acidification   | pH min                            | 7,70        | 8,00        | 7,70        | 7,80       | 7,40       | 7,70      |
| Acidification   | pH max                            | 7,70        | 8,00        | 7,70        | 7,80       | 7,40       | 7,70      |
| Salinité        | Conductivité min (μS/cm)          | 328         | 370         | 392         | 324        | 408        | 390       |
| Jannite         | Conductivité max (µS/cm)          | 328         | 370         | 392         | 324        | 408        | 390       |
| Etat des parai  | mètres physico-chimiques généraux |             |             | Mo          | yen        |            |           |

| Pesticides (Présence par rapport aux limites de détection) |            |            |            |            |            |            |            |
|------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|
| Paramètre                                                  | 09/03/2021 | 12/04/2021 | 03/05/2021 | 07/06/2021 | 16/09/2021 | 06/10/2021 | 03/11/2021 |
| Cumul précipitations (H-48)                                | 2,4        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |
| Mesure de débit (m3/s)                                     | 0,187      | 0,359      | 0,133      | 0,123      | 0,051      | 0,526      | 0,515      |
| 1113 - Bentazone                                           | <0,01      | <0,01      | <0,01      | <0,01      | 0,025      | <0,01      | <0,01      |
| 1214 - Mecoprop + Mecoprop-P                               | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      | 0,019      |
| 1221 - Métolachlor (+ S Métolachlor)                       | <0,02      | <0,02      | 0,446      | 0,079      | 0,034      | <0,02      | <0,02      |
| 1225 - Métribuzine                                         | <0,02      | <0,02      | <0,02      | 0,037      | <0,02      | <0,02      | <0,02      |
| 1506 - Glyphosate                                          | <0,025     | 0,122      | <0,025     | 0,026      | 0,107      | <0,025     | <0,025     |
| 1678 - Diméthénamide + Diméthénamide - P                   | <0,01      | <0,01      | <0,01      | 0,024      | 0,28       | 0,025      | <0,01      |
| 1907 - AMPA                                                | 0,03       | 0,088      | 0,113      | 0,122      | 0,178      | 0,065      | 0,052      |
| 6853 - Metolachlore OXA                                    | 0,226      | <0,01      | 0,118      | 0,125      | 0,204      | 0,482      | 0,286      |
| 6854 - Metolachlore ESA                                    | 1,1        | 0,568      | 0,618      | 0,831      | 1,12       | 2,21       | 1,25       |
| Les autres molécules suivies n'ont pas été détectées.      |            |            |            |            |            |            |            |

## BIOLOGIE (Arrêté du 27/07/2018)

#### Eléments biologiques

| INVERTEBRES | Indice<br>Shannon | ASPT    | Polyvoltinisme | Ovoviviparité | Richesse | 12M2    |
|-------------|-------------------|---------|----------------|---------------|----------|---------|
|             | 0,30530           | 0,58310 | 0,22180        | 0,17070       | 0,30950  | 0,31800 |



| DIATOMEES | Richesse<br>spécifique | Indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |
|-----------|------------------------|-----------------------------|--------------|----------|----------|-------------|
|           | 27                     | 3,19                        | 0,67         | 12,1     | 11,5     | 0,46        |

État des éléments biologiques : Médiocre

État écologique retenu : Médiocre





# **TORANCHE À SAINT-LAURENT-LA-CONCHE (04009940)**

|                |                                   |          | CHRC     | ONIQU    | E DE C   | ONNÉ     | ES    |          |          |          |       |         |
|----------------|-----------------------------------|----------|----------|----------|----------|----------|-------|----------|----------|----------|-------|---------|
|                |                                   | 2011     | 2012     | 2013     | 2014     | 2015     | 2016  | 2017     | 2018     | 2019     | 2020  | 2021    |
|                | Oxygène dissous (mg/l)            | 7,40     | 7,40     | 7,37     | 7,60     | 5,90     | 8,50  | 7,60     | 6,00     | 6,10     | 5,90  | 7,50    |
| Bilan de       | Taux sat. O2 dissous (%)          | 75,00    | 75,00    | 80,00    | 82,20    | 65,00    | 71,00 | 69,00    | 60,90    | 69,00    | 58,00 | 81,00   |
| l'oxygène      | DBO5 (mg O2/I)                    | 8,00     | 8,00     | 3,00     | 3,30     | 2,60     | 1,50  | 2,80     | 2,50     | 4,00     | 2,30  | 1,50    |
|                | Carbone organique dissous (mg/l)  | 13,80    | 13,80    | 7,10     | 12,00    | 7,90     | 8,00  | 8,40     | 6,50     | 13,00    | 9,20  | 8,30    |
| Température    | Température                       | 15,40    | 16,30    | 19,00    | 17,10    | 19,10    | 19,70 | 21,30    | 23,90    | 20,00    | 13,00 | 17,30   |
|                | Orthophosphates (mg/I)            | 0,97     | 0,97     | 0,60     | 1,03     | 0,77     | 0,55  | 1,02     | 0,91     | 0,98     | 0,79  | 0,68    |
|                | Phosphore total (mg/l)            | 0,81     | 0,81     | 0,28     | 0,40     | 0,68     | 0,21  | 0,43     | 0,40     | 0,58     | 0,31  | 0,24    |
| Nutriments     | Ammonium (mg/l)                   | 0,28     | 0,28     | 0,11     | 0,09     | 0,05     | 0,13  | 0,09     | 0,06     | 0,08     | 0,05  | 0,17    |
|                | Nitrites (mg/l)                   | 0,37     | 0,37     | 0,42     | 0,10     | 0,10     | 0,12  | 0,16     | 0,10     | 0,19     | 0,24  | 0,21    |
|                | Nitrates (mg/l)                   | 40,90    | 40,90    | 23,20    | 29,00    | 29,00    | 27,00 | 26,00    | 34,70    | 52,00    | 60,00 | 52,00   |
| Acidification  | pH min                            | 7,60     | 7,60     | 7,30     | 7,70     | 7,60     | 7,65  | 7,85     | 7,48     | 7,60     | 7,50  | 7,60    |
| Acidincation   | pH max                            | 8,60     | 8,60     | 8,17     | 9,30     | 8,10     | 8,55  | 8,40     | 8,00     | 9,30     | 9,00  | 8,00    |
| Salinité       | Conductivité min (µS/cm)          | 328      | 328      | 325      | 321      | 254      | 307   | 325      | 234      | 289      | 348   | 326     |
| Jannice        | Conductivité max (µS/cm)          | 431      | 431      | 467      | 487      | 441      | 365   | 463      | 439      | 397      | 470   | 394     |
| Etat des paran | nètres physico-chimiques généraux | Médiocre | Médiocre | Moyen    | Médiocre | Médiocre | Moyen | Médiocre | Moyen    | Médiocre | Moyen | Moyen   |
|                |                                   |          |          |          |          |          |       |          |          |          |       | _       |
|                |                                   | 2011     | 2012     | 2013     | 2014     | 2015     | 2016  | 2017     | 2018     | 2019     | 2020  | 2021    |
| Invertébrés    | 12M2                              |          |          |          |          | 0,33     |       |          | 0,31     | 0,06     |       | 0,32    |
|                | IBG-DCE                           | 9        | 10       | 9        | 13       | 13       |       |          | 13       |          |       | 17      |
| Diatomées      | IBD                               | 9,8      | 13,2     | 12,3     | 10,6     | 11,3     |       |          | 11,5     | 11,2     |       | 11,5    |
| D.dtocc5       | EQR                               | 0,34     | 0,59     | 0,52     | 0,40     | 0,45     |       |          | 0,46     | 0,44     |       | 0,46    |
| Macrophytes    | IBMR (EQR)                        |          |          |          |          |          |       |          | 0,80     | 0,83     |       |         |
| Poissons       | IPR                               |          |          | 28,26    |          | 34,22    |       |          | 33,90    | 35,45    |       |         |
| E              | tat biologique retenu             | Médiocre | Moyen    | Médiocre | Médiocre | Médiocre |       |          | Médiocre | Mauvais  |       | Médiocr |
| Etat é         | cologique annuel retenu           | Médiocre | Moyen    | Médiocre | Médiocre | Médiocre | Moyen | Moyen    | Médiocre | Mauvais  | Moyen | Médioc  |

#### **INTERPRÉTATION DES RÉSULTATS**

En 2021, la Toranche à Saint-Laurent la Conche présente un état écologique médiocre, l'élément diatomée étant le plus déclassant.

L'analyse des paramètres physico-chimiques généraux dégage un état moyen, avec 4 des 6 campagnes présentant au moins un paramètre déclassant. Le cours d'eau souffre d'apports significatifs en nutriments, orthophosphate en été et nitrates sur la période hivernale, entraînant une eutrophisation des eaux.

Les analyses complémentaires, réalisées sur les pesticides, montrent la présence de nombreuses molécules. On y retrouve, en plus du Glyphosate et de l'AMPA, son principal dérivé, du S-Métolachlore et du Dimethénamide, herbicide utilisés sur les plantations de maïs et de tournesol, ainsi que de la Métribuzine, désherbant utilisé sur les cultures maraîchères. L'utilisation du S-Métolachlor, autorisé d'avril à juin, est particulièrement visible sur la campagne de mai et diminue rapidement. Ses dérivés, Métolachlore OXA et ESA sont présents toute l'année en concentration cyclique dans l'environnement, avec un pic de concentration à l'automne.

L'analyse diatomées indique un peuplement stable et équilibré, dominé par Nitzchia soratensis (43%). La présence de ce taxon, caractéristique des eaux légèrement eutrophes, est cohérente avec les analyses physicochimiques réalisées et confirme l'impact des apports en nutriment sur le peuplement.

L'analyse macroinvertébrés présente des métriques (ovoviviparité et polyvoltinisme) indiquant la présence de perturbations impactant le un peuplement peu diversifié (Richesse). Si la mosaïque d'habitats est globalement bonne, on note l'absence des supports les plus biogènes (Bryophytes et hydrophytes) ainsi qu'un important colmatage biologique sur l'ensemble de la station pouvant être en lien avec l'eutrophisation du milieu. On remarque cependant la présence d'Isoperla, genre polluosensible. L'outil diagnostic identifie plusieurs sources potentielles de perturbations, en particulier l'anthropisation et l'instabilité hydrologique du bassin versant.

L'analyse de la chronique de données signale en 2021 une faible amélioration, avec une légère diminution des apports en nutriment en comparaison de 2020. On note cependant à nouveau une forte concentration de nitrates pour la 3° année consécutive. Depuis 2011, la tendance globale est à une lente amélioration, avec une diminution des apports en nutriment, particulièrement en phosphore, et une amélioration significative de l'eutrophisation (COD et DBO5). Si l'analyse biologique montre une amélioration depuis la dernière campagne (2019), les indices obtenus en 2021 ne mettent pas en évidence de changement significatif et s'inscrivent dans la continuité de la chronique depuis 2011.





## **GAROLLET À SAINT-LAURENT-LA-CONCHE (04009980)**

#### Caractéristiques de la station

Nom du cours d'eau concerné: le Garollet

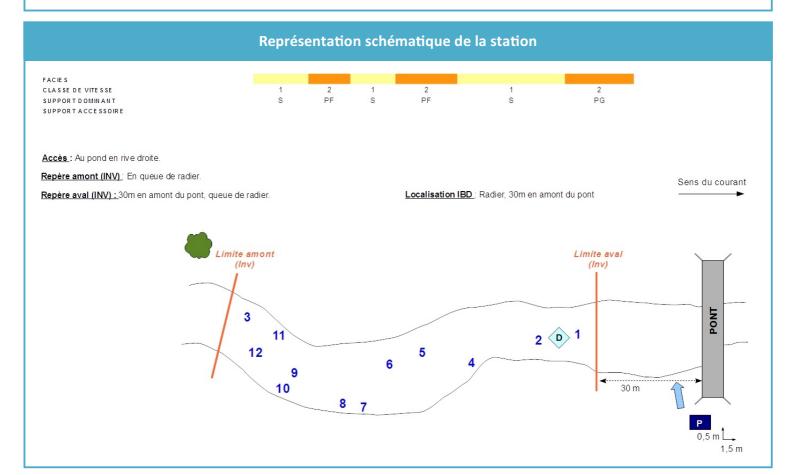
Code masse d'eau: FRGR1254

Nom de la masse d'eau: LE GAROLLET ET SES AFFLUENTS DEPUIS

LA SOURCE JUSQU'A SA CONFLUENCE AVEC LA LOIRE

Hydroécorégions: 17 DEPRESSIONS SEDIMENTAIRES (HER2: 45)

Type de la masse d'eau: TP17


| Coordonnées de la station en RGF93 / Lambert-93 (2154) |                                         |     |  |  |  |  |  |
|--------------------------------------------------------|-----------------------------------------|-----|--|--|--|--|--|
| X (longitude)                                          | X (longitude) Y (latitude) Altitude (m) |     |  |  |  |  |  |
| 795697                                                 | 6512552                                 | 347 |  |  |  |  |  |



Vue globale



Localisation de la station

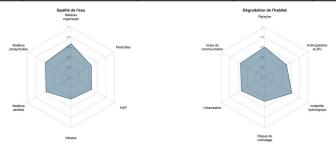




# **GAROLLET À SAINT-LAURENT-LA-CONCHE (04009980)**

#### **PHYSICO-CHIMIE**

#### Paramètres physico-chimiques généraux (Arrêté du 27/07/2018)


| Mesure de débi | ts (m3/s)                                      |  |  |  |  |  |
|----------------|------------------------------------------------|--|--|--|--|--|
|                | Oxygène dissous (mg/l)                         |  |  |  |  |  |
| Bilan de       | Taux sat. O2 dissous (%)                       |  |  |  |  |  |
| l'oxygène      | DBO5 (mg O2/I)                                 |  |  |  |  |  |
|                | Carbone organique dissous (mg/l)               |  |  |  |  |  |
| Température    | Température                                    |  |  |  |  |  |
|                | Orthophosphates (mg/l)                         |  |  |  |  |  |
|                | Phosphore total (mg/l)                         |  |  |  |  |  |
| Nutriments     | Ammonium (mg/l)                                |  |  |  |  |  |
|                | Nitrites (mg/l)                                |  |  |  |  |  |
|                | Nitrates (mg/l)                                |  |  |  |  |  |
| Acidification  | pH min                                         |  |  |  |  |  |
| Acidification  | pH max                                         |  |  |  |  |  |
| Salinité       | Conductivité min (µS/cm)                       |  |  |  |  |  |
| Samme          | Conductivité max (µS/cm)                       |  |  |  |  |  |
| Etat des para  | Etat des paramètres physico-chimiques généraux |  |  |  |  |  |

# Suivis non réalisés ou données non disponibles

| Pesticides (Présence par rapport aux limites de détection) |            |            |            |            |            |            |            |
|------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|
| Paramètre                                                  | 09/03/2021 | 12/04/2021 | 03/05/2021 | 07/06/2021 | 16/09/2021 | 06/10/2021 | 03/11/2021 |
| Cumul précipitations (H-48)                                | 2,4        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |
| Mesure de débits (m3/s)                                    | 0,015      | 0,008      | 0,015      | 0,015      | 0,009      | 0,150      | 0,089      |
| 1136 - Chlortoluron                                        | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      | 0,034      |
| 1221 - Métolachlor (+ S Métolachlor)                       | <0,02      | <0,02      | <0,02      | 0,108      | 0,044      | 0,025      | <0,02      |
| 1506 - Glyphosate                                          | <0,025     | 0,175      | <0,025     | 0,035      | 0,195      | <0,025     | 0,027      |
| 1882 - Nicosulfuron                                        | <0,01      | <0,01      | <0,01      | 0,032      | 0,02       | <0,01      | <0,01      |
| 1907 - AMPA                                                | <0,025     | 0,131      | 0,34       | 0,236      | 0,271      | 0,202      | 0,191      |
| 2544 - Dichlorprop + dichlorprop - p                       | 0,107      | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      |
| 6853 - Metolachlore OXA                                    | 0,402      | <0,01      | 0,248      | 0,166      | 0,437      | 0,759      | 0,459      |
| 6854 - Metolachlore ESA                                    | 1,340      | 0,969      | 0,691      | 0,969      | 1,100      | 3,160      | 1,720      |
| Les autres molécules suivies n'ont pas été dé              | tectées    |            | 1          |            | 1          |            |            |

### BIOLOGIE (Arrêté du 27/07/2018)

# INVERTEBRES Indice Shannon O,44510 O,46690 O,49480 O,53610 O,21050 O,44470



| DIATOMEES | Richesse<br>spécifique | Indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |
|-----------|------------------------|-----------------------------|--------------|----------|----------|-------------|
|           | 27                     | 3,55                        | 0,75         | 12,2     | 11,0     | 0,61        |

État des éléments biologiques : Moyen

État écologique retenu : Moyen





# **GAROLLET À SAINT-LAURENT-LA-CONCHE (04009980)**

|                |                                   |          | CHRC     | NIQU | E DE C   | ONNÉ     | ES       |      |          |         |      |       |
|----------------|-----------------------------------|----------|----------|------|----------|----------|----------|------|----------|---------|------|-------|
|                |                                   | 2011     | 2012     | 2013 | 2014     | 2015     | 2016     | 2017 | 2018     | 2019    | 2020 | 2021  |
|                | Oxygène dissous (mg/l)            | 8,00     | 8,00     |      | 10,10    | 7,90     |          |      | 8,70     | 5,70    |      |       |
| Bilan de       | Taux sat. O2 dissous (%)          | 79,00    | 79,00    |      | 81,30    | 75,60    |          |      | 91,20    | 64,10   |      |       |
| l'oxygène      | DBO5 (mg O2/I)                    | 1,70     | 1,70     |      | 2,80     | 1,90     |          |      | 2,10     | 2,30    |      |       |
|                | Carbone organique dissous (mg/l)  | 12,00    | 12,00    |      | 13,00    | 8,70     |          |      | 41,00    | 13,00   |      |       |
| Température    | Température                       | 16,10    | 16,50    |      | 17,40    | 18,00    |          |      | 20,20    | 18,90   |      |       |
|                | Orthophosphates (mg/l)            | 1,90     | 1,90     |      | 1,30     | 1,50     |          |      | 1,30     | 2,20    |      |       |
|                | Phosphore total (mg/l)            | 0,68     | 0,68     |      | 0,47     | 0,47     |          |      | 0,59     | 0,70    |      |       |
| Nutriments     | Ammonium (mg/l)                   | 0,09     | 0,09     |      | 0,17     | 0,24     |          |      | 0,14     | 0,04    |      |       |
|                | Nitrites (mg/l)                   | 0,13     | 0,13     |      | 0,23     | 0,21     |          |      | 0,24     | 0,29    |      |       |
|                | Nitrates (mg/l)                   | 34,90    | 34,90    |      | 23,50    | 33,90    |          |      | 53,00    | 65,00   |      |       |
| Acidification  | pH min                            | 7,16     | 7,16     |      | 7,40     | 7,50     |          |      | 7,60     | 7,30    |      |       |
| Acidification  | pH max                            | 9,01     | 9,01     |      | 8,40     | 8,40     |          |      | 8,50     | 8,20    |      |       |
| Salinité       | Conductivité min (µS/cm)          | 275      | 275      |      | 60       | 278      |          |      | 333      | 388     |      |       |
| Samme          | Conductivité max (µS/cm)          | 519      | 519      |      | 527      | 564      |          |      | 515      | 579     |      |       |
| Etat des paran | nètres physico-chimiques généraux | Médiocre | Médiocre |      | Médiocre | Médiocre |          |      | Mauvais  | Mauvais |      |       |
|                |                                   |          |          |      |          |          |          |      |          |         |      |       |
|                |                                   | 2011     | 2012     | 2013 | 2014     | 2015     | 2016     | 2017 | 2018     | 2019    | 2020 | 2021  |
| Invertébrés    | 12M2                              |          |          |      |          | 0,61     |          |      |          |         |      | 0,44  |
| invertebres    | IBG-DCE                           |          | 19       |      | 20       | 19       |          |      | ľ        |         |      | 15    |
| Diatomées      | IBD                               | 8,4      | 11,8     |      |          | 9,4      |          |      |          |         |      | 11    |
| Diatomees      | EQR                               | 0,45     | 0,66     |      |          | 0,51     | <b>'</b> | 7    | ľ        |         | 7    | 0,61  |
| Macrophytes    | IBMR (EQR)                        |          |          |      |          |          |          |      | 0,94     |         |      |       |
| Poissons       | IPR                               |          |          |      |          |          |          |      | 27,20    |         |      |       |
| ı              | tat biologique retenu             | Médiocre | Moyen    |      |          | Médiocre |          |      | Médiocre |         |      | Moyen |
| Etat é         | cologique annuel retenu           | Médiocre | Moyen    |      | Moyen    | Médiocre |          |      | Médiocre | Moyen   |      | Moyen |

#### INTERPRÉTATION DES RÉSULTATS

En 2021, le Garollet à Saint-Laurent la Conche présente un état écologique moyen, l'élément diatomées étant déclassant.

Les analyses physico-chimiques complémentaires sur les pesticides indiquent la présence de plusieurs molécules. On note la présence de glyphosate et de l'AMPA, son principal dérivé, en concentration importante pouvant avoir un impact sur la vie aquatique. On retrouve également de S-métolachlor, herbicide utilisé sur les plantations de maïs et de tournesol, ainsi que de fortes concentrations de ses dérivés OXA et ESA, témoignant de la persistance de cette molécule dans l'environnement. Enfin on note la présence de Dichlorprop, herbicide interdit à l'usage en France depuis 2003.

L'analyse diatomée indique un peuplement stable et équilibré. La liste floristique est dominée par Planothidium lanceolatum (PTLA - 20%), Mayamaea permitis (MPMI -19%) et Nitzschia soratensis (NSTS - 13%). La présence de taxons caractéristiques des milieux eutrophes et riches en nutriment (PTLA et NSTS), voire des eaux dégradées polysaprobes (MPMI), indique des apports importants en matières organiques et nutriments, cohérents avec le colmatage organique observé sur la station, et conditionnant le peuplement diatomique.

L'indice macroinvertébrés se situe en limite de classe d'état « Moyen », pouvant signaler une surestimation de l'état biologique. Si l'ensemble des métriques présentes des valeurs impactées, l'indice est principalement altéré par une faible richesse taxonomique, en lien avec une mosaïque d'habitats faiblement diversifiée et dominée par des supports peu biogènes (sables/limons et hélophytes).

Le fort colmatage biologique sur l'ensemble de la station, cohérent avec l'eutrophisation déjà mise en évidence par l'indice IBD, est préjudiciable au développement de la macrofaune. L'I2M2 ne mettant pas cependant en avant de perturbation significative (état ≥ à bon), l'utilisation de l'outil diagnostic n'est pas pertinente.

L'analyse de la chronique des données ne met pas en évidence de variation significative. L'analyse de l'état biologique, malgré le manque de données depuis 20015, semble inscrire l'année 2021 dans la continuité des précédentes observations.





la Limouzine

## **SOLEILLANT À FEURS (04009995)**

#### Caractéristiques de la station

Invertebres Macrophytes

▲ Diatomees

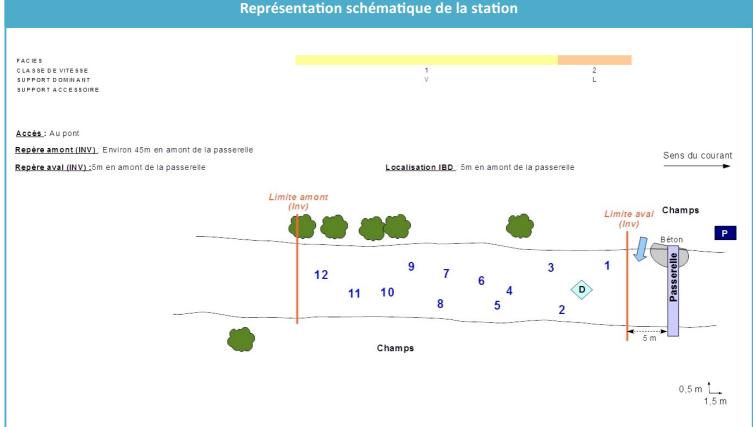
Oligochetes

Poissons

Nom du cours d'eau concerné: le Soleillant

Code masse d'eau: FRGR1291

Nom de la masse d'eau: LE SOLEILLANT ET SES AFFLUENTS DEPUIS


LA SOURCE JUSQU'A SA CONFLUENCE AVEC LA LOIRE

Hydroécorégions: 17 DEPRESSIONS SEDIMENTAIRES (HER2: 45)

| Coordonnées de la station en RGF93 / Lambert-93 (2154) |              |              |  |  |  |  |  |
|--------------------------------------------------------|--------------|--------------|--|--|--|--|--|
| X (longitude)                                          | Y (latitude) | Altitude (m) |  |  |  |  |  |
| 797733                                                 | 6514450      | 359          |  |  |  |  |  |







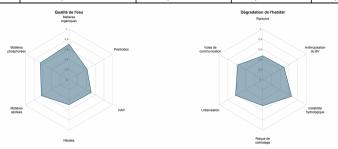


## **SOLEILLANT À FEURS (04009995)**

#### **PHYSICO-CHIMIE**

#### Paramètres physico-chimiques généraux (Arrêté du 27/07/2018)

| Mesure de débi | ts (m3/s)                                      |  |  |  |  |  |
|----------------|------------------------------------------------|--|--|--|--|--|
|                | Oxygène dissous (mg/l)                         |  |  |  |  |  |
| Bilan de       | Taux sat. O2 dissous (%)                       |  |  |  |  |  |
| l'oxygène      | DBO5 (mg O2/I)                                 |  |  |  |  |  |
|                | Carbone organique dissous (mg/l)               |  |  |  |  |  |
| Température    | Température                                    |  |  |  |  |  |
|                | Orthophosphates (mg/l)                         |  |  |  |  |  |
|                | Phosphore total (mg/l)                         |  |  |  |  |  |
| Nutriments     | Ammonium (mg/l)                                |  |  |  |  |  |
|                | Nitrites (mg/l)                                |  |  |  |  |  |
|                | Nitrates (mg/l)                                |  |  |  |  |  |
| Acidification  | pH min                                         |  |  |  |  |  |
| Acidification  | pH max                                         |  |  |  |  |  |
| Salinité       | Conductivité min (µS/cm)                       |  |  |  |  |  |
| Samile         | Conductivité max (µS/cm)                       |  |  |  |  |  |
| Etat des parar | Etat des paramètres physico-chimiques généraux |  |  |  |  |  |


# Suivis non réalisés ou données non disponibles

| Pesticides (Présence par rapport aux limites de détection) |            |            |            |            |            |            |            |  |  |  |
|------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|--|--|--|
| Paramètre                                                  | 09/03/2021 | 12/04/2021 | 03/05/2021 | 07/06/2021 | 16/09/2021 | 06/10/2021 | 03/11/2021 |  |  |  |
| Cumul précipitations (H-48)                                | 2,4        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |  |  |  |
| Mesure de débits (m3/s)                                    | 0,001      | 0,004      | 0,001      | 0,003      | 0,002      | 0,014      | 0,002      |  |  |  |
| 6853 - Metolachlore OXA                                    | 0,422      | <0,01      | 0,214      | 0,242      | 0,205      | 0,331      | 0,272      |  |  |  |
| 6854 - Metolachlore ESA                                    | 1,58       | 1,01       | 0,733      | 1,54       | 0,422      | 2,13       | 1,55       |  |  |  |

Les autres molécules suivies n'ont pas été détectées.

### BIOLOGIE (Arrêté du 27/07/2018)

# INVERTEBRES | Indice | Shannon | Shannon | O,24050 | O,03030 | O,49910 | O,32710 | O,00000 | O,23410 | O,00000 | O,23410 | O,00000 | O,0



| DIATOMEES | Richesse<br>spécifique | Indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |
|-----------|------------------------|-----------------------------|--------------|----------|----------|-------------|
|           | 53                     | 4,4                         | 0,77         | 11,9     | 12,0     | 0,67        |

État des éléments biologiques : Médiocre

État écologique retenu : Médiocre





## **SOLEILLANT À FEURS (04009995)**

|                | CHRONIQUE DE DONNÉES              |         |         |          |      |          |      |      |      |      |      |          |
|----------------|-----------------------------------|---------|---------|----------|------|----------|------|------|------|------|------|----------|
|                |                                   | 2011    | 2012    | 2013     | 2014 | 2015     | 2016 | 2017 | 2018 | 2019 | 2020 | 2021     |
|                | Oxygène dissous (mg/l)            | 6,70    | 6,70    | 7,90     |      | 6,28     |      |      |      |      |      |          |
| Bilan de       | Taux sat. O2 dissous (%)          | 70,00   | 70,00   | 75,50    |      | 67,70    |      |      |      |      |      |          |
| l'oxygène      | DBO5 (mg O2/I)                    | 4,40    | 4,40    | 2,50     |      | 5,00     |      |      |      |      |      |          |
|                | Carbone organique dissous (mg/l)  | 21,00   | 21,00   | 14,00    |      | 17,00    |      |      |      |      |      |          |
| Température    | Température                       | 16,80   | 16,60   | 15,40    |      | 17,60    |      |      |      |      |      |          |
|                | Orthophosphates (mg/l)            | 0,40    | 0,40    | 0,39     |      | 0,42     |      |      |      |      |      |          |
|                | Phosphore total (mg/l)            | 0,30    | 0,30    | 0,25     |      | 0,22     |      |      |      |      |      |          |
| Nutriments     | Ammonium (mg/l)                   | 0,24    | 0,24    | 0,22     |      | 0,70     |      |      |      |      |      |          |
|                | Nitrites (mg/l)                   | 0,18    | 0,18    | 0,19     |      | 0,22     |      |      |      |      |      |          |
|                | Nitrates (mg/l)                   | 12,20   | 12,20   | 12,90    |      | 9,70     |      |      |      |      |      |          |
| Acidification  | pH min                            | 7,28    | 7,28    | 7,25     |      | 7,30     |      |      |      |      |      |          |
| Acidification  | pH max                            | 7,73    | 7,73    | 7,80     |      | 7,90     |      |      |      |      |      |          |
| Salinité       | Conductivité min (µS/cm)          | 261     | 261     | 254      |      | 218      |      |      |      |      |      |          |
| Samme          | Conductivité max (µS/cm)          | 448     | 448     | 424      |      | 396      |      |      |      |      |      |          |
| Etat des paran | nètres physico-chimiques généraux | Mauvais | Mauvais | Médiocre |      | Mauvais  |      |      |      |      |      |          |
|                |                                   |         |         |          |      |          |      |      |      |      |      |          |
|                |                                   | 2011    | 2012    | 2013     | 2014 | 2015     | 2016 | 2017 | 2018 | 2019 | 2020 | 2021     |
| Invertébrés    | 12M2                              |         |         |          |      | 0,18     |      |      |      |      |      | 0,23     |
| invertebres    | IBG-DCE                           | 13      | 9       | 8        | 14   | 8        | 7    |      |      |      |      | 11       |
| Diatomées      | IBD                               | 10,7    |         | 12,8     |      | 13       |      |      |      |      |      | 12       |
| Diatoffices    | EQR                               | 0,59    |         | 0,72     |      | 0,73     | 7    |      |      |      | 7    | 0,67     |
| Macrophytes    | IBMR (EQR)                        |         |         |          |      |          |      |      |      |      |      |          |
| Poissons       | IPR                               |         | 50,12   | 36,58    |      |          |      |      |      |      |      |          |
| ·              | tat biologique retenu             | Moyen   | Mauvais | Mauvais  |      | Médiocre |      |      |      |      |      | Médiocre |
|                |                                   |         |         |          |      |          |      |      |      |      |      |          |
| Etat é         | cologique annuel retenu           | Moyen   | Mauvais | Mauvais  |      | Médiocre |      |      |      |      |      | Médiocre |

#### INTERPRÉTATION DES RÉSULTATS

En 2021, le Soleillant à Feurs présente un état écologique médiocre, les éléments diatomée et macroinvertébré étant déclassant.

Les analyses physico-chimiques complémentaires sur les pesticides indiquent la présence de métolachlore OXA et ESA. Ces deux molécules correspondent aux dérivés issus de la dégradation du S-métolachlore (non détecté sur cette station), désherbant généralement utilisé pour la culture du maïs et du tournesol et répandu d'avril à juin. Si les concentrations varient en fonction de la période de traitement et du lessivage des sols, leur présence est relevée de manière quasi systématique. De plus, le métolachlore ESA est considéré par l'ANSES comme un métabolite pertinent pour le suivi des eaux de consommation humaine et ne doit donc à ce titre pas dépasser les 0,1 µg/L. Les concentrations observées sur le Soleillant, jusqu'à 20 fois supérieurs à cette norme, induisent un fort risque de pollution de la nappe et des ressources en eau.

L'analyse diatomée indique un peuplement stable, diversifié et équilibré, dominé par Planothidium lanceolatum (PTLA - 22%) et Planothidium frequentissimum (PLFR - 18%). Ces deux taxons présentent une affinité avec les milieux riches en nutriments et matières organiques et sont considérés comme peu sensibles aux pollutions, décrivant un milieu impacté par une eutrophisation des eaux.

L'analyse macroinvertébré révèle des métriques impactées et la présence de plusieurs perturbations. La richesse taxonomique, métrique la plus altérée, traduit une mosaïque d'habitat peu diversifiée et dominée par des supports peu biogènes (Vases) associée à un colmatage important et généralisé à l'ensemble de la station, situation peu favorable au développement de la macrofaune. De plus, la métrique d'ASPT indique la présence de perturbation significative impactant et limitant le peuplement avec l'absence des taxons les plus polluosensibles. L'outil diagnostic met en avant d'importants risques associés à la qualité de l'eau, avec des apports en matières organiques, phosphorées et azotées, confirmés par la forte présence de vases sur la station et renforçant les conclusions de l'analyse IBD quant à l'eutrophisation du milieu. On note aussi un risque en lien avec l'instabilité hydrologique pouvant limiter la qualité biologique du cours d'eau.

La chronique biologique ne met pas en évidence d'évolution significative et s'inscrit dans la continuité pour les analyses effectuées.





## **CHARPASSONNE À PANISSIERES (04010130)**

#### Caractéristiques de la station

Invertebres

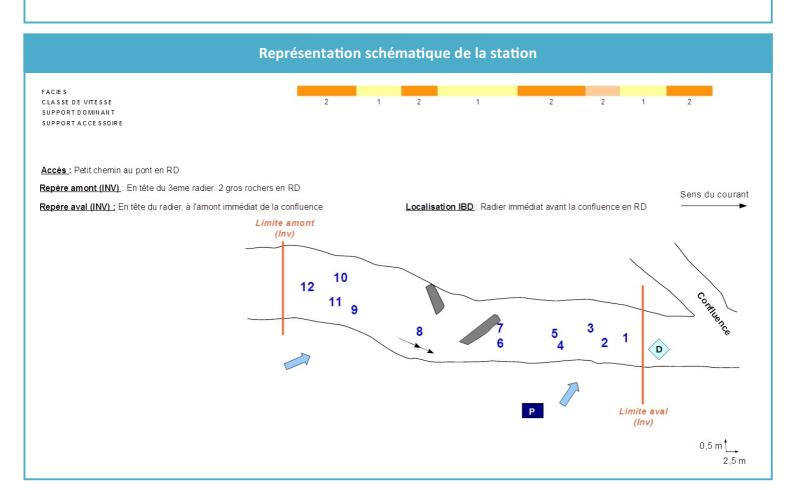
Macrophytes

Nom du cours d'eau concerné: la Charpassonne

Code masse d'eau: FRGR0173

Nom de la masse d'eau: LA LOISE ET SES AFFLUENTS DEPUIS LA

SOURCE JUSQU'A SA CONFLUENCE AVEC LA LOIRE **Hydroécorégions:** 3 MASSIF CENTRAL SUD (HER2 : 86)


Type de la masse d'eau: P3

| Coordonnées de la station en RGF93 / Lambert-93 (2154) |              |              |  |  |  |  |  |  |  |
|--------------------------------------------------------|--------------|--------------|--|--|--|--|--|--|--|
| X (longitude)                                          | Y (latitude) | Altitude (m) |  |  |  |  |  |  |  |
| 802227                                                 | 6521310      | 491          |  |  |  |  |  |  |  |



Vue globale

Localisation de la station





# **CHARPASSONNE À PANISSIERES (04010130)**

#### **PHYSICO-CHIMIE**

## Paramètres physico-chimiques généraux (Arrêté du 27/07/2018)

| Mesure de débi | ts (m3/s)                                      |  |  |  |  |  |  |
|----------------|------------------------------------------------|--|--|--|--|--|--|
|                | Oxygène dissous (mg/l)                         |  |  |  |  |  |  |
| Bilan de       | Taux sat. O2 dissous (%)                       |  |  |  |  |  |  |
| l'oxygène      | DBO5 (mg O2/I)                                 |  |  |  |  |  |  |
|                | Carbone organique dissous (mg/l)               |  |  |  |  |  |  |
| Température    | Température                                    |  |  |  |  |  |  |
|                | Orthophosphates (mg/l)                         |  |  |  |  |  |  |
|                | Phosphore total (mg/l)                         |  |  |  |  |  |  |
| Nutriments     | Ammonium (mg/l)                                |  |  |  |  |  |  |
|                | Nitrites (mg/I)                                |  |  |  |  |  |  |
|                | Nitrates (mg/l)                                |  |  |  |  |  |  |
| Acidification  | pH min                                         |  |  |  |  |  |  |
| Acidification  | pH max                                         |  |  |  |  |  |  |
| Salinité       | Conductivité min (µS/cm)                       |  |  |  |  |  |  |
| Jannice        | Conductivité max (µS/cm)                       |  |  |  |  |  |  |
| Etat des parar | Etat des paramètres physico-chimiques généraux |  |  |  |  |  |  |

# Suivis non réalisés ou données non disponibles

| Pesticides (Présence par rapport aux limites de détection) |            |            |            |            |            |            |            |  |  |  |
|------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|--|--|--|
| Paramètre                                                  | 10/03/2021 | 12/04/2021 | 03/05/2021 | 08/06/2021 | 15/09/2021 | 05/10/2021 | 03/11/2021 |  |  |  |
| Cumul précipitations (H-48)                                | 2,4        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |  |  |  |
| Mesure de débits (m3/s)                                    | 0,082      | 0,189      | 0,302      | 0,11       | 0,142      | 0,438      | 0,218      |  |  |  |
| 1907 - AMPA                                                | <0,025     | <0,025     | <0,025     | 0,029      | 0,102      | <0,025     | 0,031      |  |  |  |
| 6853 - Metolachlore OXA                                    | 0,043      | <0,01      | <0,01      | 0,018      | 0,027      | 0,032      | 0,026      |  |  |  |
| 6854 - Metolachlore ESA                                    | 0,569      | 0,299      | 0,186      | 0,423      | 0,303      | 0,347      | 0,377      |  |  |  |
| es autres molécules suivies n'ont pas été détectées.       |            |            |            |            |            |            |            |  |  |  |

# BIOLOGIE (Arrêté du 27/07/2018)

| Eléments biologiques |                   |         |                |               |          |         |  |  |  |  |
|----------------------|-------------------|---------|----------------|---------------|----------|---------|--|--|--|--|
| INVERTEBRES          | Indice<br>Shannon | ASPT    | Polyvoltinisme | Ovoviviparité | Richesse | 12M2    |  |  |  |  |
|                      | 0,70840           | 0,74370 | 0,69410        | 0,55730       | 0,40220  | 0,63060 |  |  |  |  |



| DIATOMEES | Richesse<br>spécifique | Indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |
|-----------|------------------------|-----------------------------|--------------|----------|----------|-------------|
|           | 32                     | 3,98                        | 0,8          | 11,7     | 11,9     | 0,49        |

État des éléments biologiques : Médiocre

État écologique retenu : Médiocre





## **CHARPASSONNE À PANISSIERES (04010130)**

|                | CHRONIQUE DE DONNÉES              |          |          |       |       |         |         |         |       |         |          |         |
|----------------|-----------------------------------|----------|----------|-------|-------|---------|---------|---------|-------|---------|----------|---------|
|                |                                   | 2011     | 2012     | 2013  | 2014  | 2015    | 2016    | 2017    | 2018  | 2019    | 2020     | 2021    |
|                | Oxygène dissous (mg/l)            | 8,40     | 8,40     | 9,60  | 8,20  | 7,30    | 8,46    | 7,00    | 8,59  | 7,90    | 8,00     |         |
| Bilan de       | Taux sat. O2 dissous (%)          | 84,00    | 84,00    | 94,90 | 86,60 | 81,90   | 91,00   | 73,90   | 95,00 | 78,90   | 87,00    |         |
| l'oxygène      | DBO5 (mg O2/I)                    | 2,80     | 2,80     | 0,90  | 1,30  | 2,40    | 1,90    | 0,70    | 1,90  | 1,30    | 4,00     |         |
|                | Carbone organique dissous (mg/l)  | 5,20     | 5,20     | 3,70  | 3,50  | 3,90    | 3,60    | 3,20    | 4,90  | 4,70    | 3,60     |         |
| Température    | Température                       | 16,00    | 14,20    | 15,00 | 18,80 | 17,90   | 17,70   | 20,00   | 17,50 | 14,90   | 18,00    |         |
|                | Orthophosphates (mg/l)            | 1,50     | 1,50     | 0,13  | 0,19  | 0,22    | 0,23    | 0,20    | 0,17  | 0,28    | 0,89     |         |
|                | Phosphore total (mg/l)            | 0,60     | 0,60     | 0,09  | 0,09  | 0,08    | 0,08    | 0,08    | 0,10  | 0,13    | 0,30     |         |
| Nutriments     | Ammonium (mg/l)                   | 0,33     | 0,33     | 0,10  | 0,05  | 0,04    | 0,03    | 0,03    | 0,09  | 0,04    | 0,04     |         |
|                | Nitrites (mg/l)                   | 0,26     | 0,26     | 0,07  | 0,09  | 0,08    | 0,03    | 0,06    | 0,04  | 0,04    | 0,06     |         |
|                | Nitrates (mg/l)                   | 21,10    | 21,10    | 21,00 | 18,10 | 18,00   | 19,20   | 20,10   | 24,70 | 35,40   | 21,00    |         |
| Acidification  | pH min                            | 7,40     | 7,40     | 7,20  | 7,30  | 7,35    | 7,35    | 7,50    | 7,30  | 7,20    | 7,40     |         |
| Acidification  | pH max                            | 8,05     | 8,05     | 7,60  | 8,35  | 7,70    | 7,70    | 7,65    | 7,60  | 7,70    | 8,10     |         |
| Salinité       | Conductivité min (µS/cm)          | 227      | 227      | 174   | 158   | 187     | 169     | 188     | 175   | 216     | 215      |         |
| Samme          | Conductivité max (µS/cm)          | 724      | 724      | 345   | 314   | 638     | 329     | 706     | 274   | 366     | 552      |         |
| Etat des paran | nètres physico-chimiques généraux | Médiocre | Médiocre | Bon   | Bon   | Bon     | Bon     | Bon     | Bon   | Bon     | Moyen    |         |
|                |                                   | 2011     | 2212     | 2212  |       |         | 2010    |         |       |         |          |         |
|                |                                   | 2011     | 2012     | 2013  | 2014  | 2015    | 2016    | 2017    | 2018  | 2019    | 2020     | 2021    |
| Invertébrés    | 12M2                              |          |          |       |       | 0,69    | 0,41    | 0,66    | 0,61  | 0,58    | 0,58     | 0,63    |
|                | IBG-DCE                           | 19       | 14       | 13    | 17    | 16      | 14      | 18      | 16    |         |          | 17      |
| Diatomées      | IBD                               | 11,3     | 13,8     | 13,7  | 13,7  | 13,4    | 13,4    | 12,4    | 14,1  | 11,3    | 10,4     | 11,9    |
|                | EQR                               | 0,45     | 0,63     | 0,62  | 0,62  | 0,60    | 0,60    | 0,53    | 0,65  | 0,45    | 0,39     | 0,49    |
| Macrophytes    | IBMR (EQR)                        | 0,89     |          | 0,86  |       |         |         |         | 0,84  |         | 0,95     |         |
| Poissons       | IPR                               | 48,95    |          |       | 19,04 | 69,71   | 45,59   | 54,92   |       | 36,23   |          |         |
| E              | tat biologique retenu             | Mauvais  | Moyen    | Moyen | Moyen | Mauvais | Mauvais | Mauvais | Moyen | Mauvais | Médiocre | Médiocr |
| Etat é         | cologique annuel retenu           | Mauvais  | Moyen    | Moyen | Moyen | Mauvais | Mauvais | Mauvais | Moyen | Mauvais | Médiocre | Médiocı |

#### **INTERPRÉTATION DES RÉSULTATS**

En 2021, la Charpassonne à Panissières présente un état écologique médiocre, l'élément diatomée étant déclassant.

Les analyses physico-chimiques complémentaires sur les pesticides indiquent la présence de plusieurs molécules, dont l'AMPA, principal produit de dégradation du glyphosate.

On retrouve également la présence de métolachlore OXA et ESA, deux molécules correspondant aux dérivés issus de la dégradation du S-métolachlore (non déctécté sur cette station), désherbant utilisé sur les cultures de maïs et de tournesol principalement. La présence de métolachlore ESA, considéré par l'ANSES comme un métabolite pertinent pour le suivi des eaux de consommation humaine et ne devant donc à ce titre pas dépasser les 0,1 µg/L, ainsi que sa rémanence et les concentrations observées (jusqu'à 5 fois la concentration maximale pour de l'eau potable, fait peser un risque sur la ressource en eau potable et pourrait entraîner la contamination des nappes phréatiques.

L'analyse diatomée, paramètre le plus déclassant de la station, indique un peuplement stable et équilibré, dominé par Navicula gregaria (NGRE -24%) et Mayamaea permitis (MPMI -13%). Ces deux taxons sont tolérants et peu sensibles aux pollutions (NGRE) voire fortement saprobe, caractéristiques des milieux dégradés et riches en matière organique (MPMI). La note IPS, plus sensible aux altérationss physicochimiques, confirme la note IBD et l'existence d'une perturbation impactant le peuplement

L'analyse macro invertébrée indique de bonnes conditions pour le développement de la macrofaune. Si on observe une relativement faible richesse taxonomique, et ceci malgré la présence d'habitats biogène et une mosaïque d'habitat diversifiée, cela semble en partie dû à une forte homogénéité en lien avec la dominance naturelle d'un seul support (Pierre/Galets). De plus, on note une bonne métrique d'ASPT, traduisant la présence de plusieurs taxons fortement polluosensibles, à l'image des Perlodidae et Chloroperlidae, présents en nombre sur cette station.

On note la présence de Potamopyrgus et de l'écrevisse signal, taxons invasives.

L'I2M2 ne mettant pas en avant de perturbation significative (état  $\geq$  à bon), l'utilisation de l'outil diagnostic n'est pas pertinente.

L'analyse de la chronique de données ne signale pas de dégradation en comparaison de la campagne 2020, on observe cependant la persistance de l'altération de l'indice IBD depuis 2017, en opposition à la période 2012/2016.





## LOISE à SALT-EN-DONZY (04010180)

☐ Invertebres
♦ Macrophytes

#### caractéristiques de la station

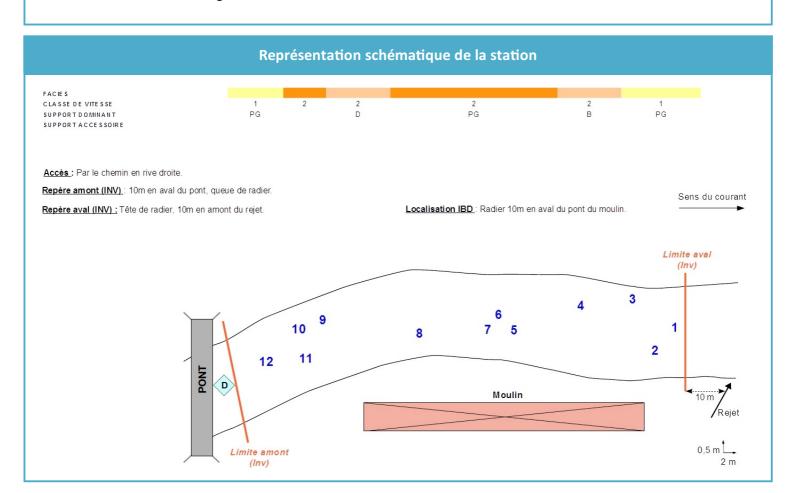
Nom du cours d'eau concerné: Code masse d'eau: FRGR0173

Nom de la masse d'eau: LA LOISE ET SES AFFLUENTS DEPUIS LA

SOURCE JUSQU'A SA CONFLUENCE AVEC LA LOIRE **Hydroécorégions:** 3 MASSIF CENTRAL SUD (HER2 : 86)

Type de la masse d'eau: P3

| Coordonnée    | Coordonnées de la station en RGF93 / Lambert-93 (2154) |              |  |  |  |  |  |  |  |  |
|---------------|--------------------------------------------------------|--------------|--|--|--|--|--|--|--|--|
| X (longitude) | Y (latitude)                                           | Altitude (m) |  |  |  |  |  |  |  |  |
| 800408        | 6516172                                                | 0            |  |  |  |  |  |  |  |  |




Diatomees
Poissons
Oligochetes

eles Œillons

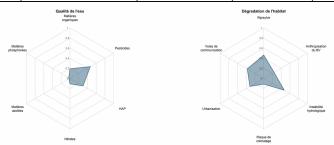
Vue globale

Localisation de la station





# **LOISE à SALT-EN-DONZY (04010180)**


## **PHYSICO-CHIMIE**

|                | Paramètres physico-c              | himiques gé | enéraux (Ar | rêté du 27/ | 07/2018)   |            |           |  |  |  |  |  |  |  |
|----------------|-----------------------------------|-------------|-------------|-------------|------------|------------|-----------|--|--|--|--|--|--|--|
|                | Année                             | 21/01/2021  | 30/03/2021  | 15/06/2021  | 10/08/2021 | 07/09/2021 | 12/10/202 |  |  |  |  |  |  |  |
| Mesure de débi | t (m3/s)                          | 1,294       | 0,065       | 0,067       | 0,295      | 0,018      | 0,210     |  |  |  |  |  |  |  |
| Bilan de       | Oxygène dissous (mg/l)            | 12,20       | 12,30       | 9,42        | 9,90       | 9,80       | 10,90     |  |  |  |  |  |  |  |
|                | Taux sat. O2 dissous (%)          | 103         | 104         | 99          | 101        | 100        | 99        |  |  |  |  |  |  |  |
| l'oxygène      | DBO5 (mg O2/I)                    | 3,00        | 0,60        | 0,90        | 1,30       | 0,50       | 1,80      |  |  |  |  |  |  |  |
|                | Carbone organique dissous (mg/l)  | 6,40        | 4,90        | 5,10        | 7,20       | 5,50       | 5,40      |  |  |  |  |  |  |  |
| Température    | Température                       | 6,00        | 6,10        | 15,70       | 14,50      | 14,90      | 8,60      |  |  |  |  |  |  |  |
|                | Orthophosphates (mg/l)            | 0,17        | 0,11        | 0,45        | 0,29       | 0,40       | 0,24      |  |  |  |  |  |  |  |
|                | Phosphore total (mg/l)            | 0,10        | 0,04        | 0,20        | 0,12       | 0,14       | 0,09      |  |  |  |  |  |  |  |
| Nutriments     | Ammonium (mg/I)                   | 0,05        | 0,05        | 0,05        | 0,05       | 0,05       | 0,05      |  |  |  |  |  |  |  |
|                | Nitrites (mg/l)                   | 0,03        | 0,02        | 0,02        | 0,02       | 0,02       | 0,04      |  |  |  |  |  |  |  |
|                | Nitrates (mg/I)                   | 40,00       | 14,00       | 8,60        | 7,50       | 7,20       | 9,80      |  |  |  |  |  |  |  |
| Acidification  | pH min                            | 7,70        | 7,80        | 7,80        | 7,90       | 7,70       | 8,00      |  |  |  |  |  |  |  |
| Acidification  | pH max                            | 7,70        | 7,80        | 7,80        | 7,90       | 7,70       | 8,00      |  |  |  |  |  |  |  |
| Salinité       | Conductivité min (µS/cm)          | 261         | 255         | 272         | 263        | 297        | 268       |  |  |  |  |  |  |  |
| Jannice        | Conductivité max (µS/cm)          | 261         | 255         | 272         | 263        | 297        | 268       |  |  |  |  |  |  |  |
| Etat des parai | nètres physico-chimiques généraux |             |             | Mo          | yen        | Moyen      |           |  |  |  |  |  |  |  |

| Pesticides (Présence par rapport aux limites de détection) |            |            |            |            |            |            |            |  |  |  |
|------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|--|--|--|
| Paramètre                                                  | 09/03/2021 | 12/04/2021 | 03/05/2021 | 07/06/2021 | 16/09/2021 | 06/10/2021 | 03/11/2021 |  |  |  |
| Cumul précipitations (H-48)                                | 2,4        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |  |  |  |
| Mesure de débit (m3/s)                                     | 0,053      | 0,076      | 0,087      | 0,115      | 0,079      | 0,547      | 0,18       |  |  |  |
| 1221 - Métolachlor (+ S Métolachlor)                       | <0,02      | <0,02      | <0,02      | 0,027      | <0,02      | <0,02      | <0,02      |  |  |  |
| 1678 - Diméthénamide + Diméthénamide - P                   | <0,01      | <0,01      | <0,01      | 0,013      | <0,01      | <0,01      | <0,01      |  |  |  |
| 1907 - AMPA                                                | <0,025     | 0,035      | 0,048      | 0,083      | 0,21       | 0,052      | 0,057      |  |  |  |
| 6853 - Metolachlore OXA                                    | 0,173      | <0,01      | 0,038      | 0,046      | 0,048      | 0,091      | 0,085      |  |  |  |
| 6854 - Metolachlore ESA                                    | 0,825      | 0,558      | 0,336      | 0,552      | 0,499      | 0,607      | 0,7        |  |  |  |
| Les autres molécules suivies n'ont pas été détecté         | es.        | •          | •          |            |            | •          |            |  |  |  |

## BIOLOGIE (Arrêté du 27/07/2018)

| Eléments biologiques |                   |         |                |               |          |         |  |  |  |  |
|----------------------|-------------------|---------|----------------|---------------|----------|---------|--|--|--|--|
| INVERTEBRES          | Indice<br>Shannon | ASPT    | Polyvoltinisme | Ovoviviparité | Richesse | 12M2    |  |  |  |  |
|                      | 0,49570           | 0,91500 | 0,75030        | 0,77870       | 0,42460  | 0,69820 |  |  |  |  |



| DIATOMEES | Richesse<br>spécifique | Indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |
|-----------|------------------------|-----------------------------|--------------|----------|----------|-------------|
|           | 31                     | 4,05                        | 0,82         | 13,8     | 13,6     | 0,61        |

État des éléments biologiques : Moyen

État écologique retenu : Moyen





## LOISE à SALT-EN-DONZY (04010180)

|                |                                   |          | CHRC     | NIQU  | IE DE D  | ONNÉ     | ES    |          |          |        |       |       |
|----------------|-----------------------------------|----------|----------|-------|----------|----------|-------|----------|----------|--------|-------|-------|
|                |                                   | 2011     | 2012     | 2013  | 2014     | 2015     | 2016  | 2017     | 2018     | 2019   | 2020  | 2021  |
|                | Oxygène dissous (mg/l)            | 9,60     | 9,60     | 9,00  | 9,40     | 8,70     | 7,70  | 6,70     | 7,10     | 10,00  | 9,90  | 9,30  |
| Bilan de       | Taux sat. O2 dissous (%)          | 98,00    | 98,00    | 99,00 | 94,50    | 94,00    | 83,00 | 72,00    | 75,00    | 100,00 | 96,00 | 98,70 |
| l'oxygène      | DBO5 (mg O2/I)                    | 5,00     | 5,00     | 1,10  | 1,70     | 3,60     | 2,60  | 3,40     | 3,00     | 0,90   | 2,10  | 3,00  |
|                | Carbone organique dissous (mg/l)  | 9,10     | 9,10     | 5,40  | 7,30     | 8,00     | 8,00  | 11,00    | 11,00    | 5,80   | 8,70  | 7,20  |
| Température    | Température                       | 14,20    | 14,70    | 17,30 | 17,50    | 17,30    | 18,40 | 20,00    | 21,10    | 21,50  | 12,30 | 15,70 |
|                | Orthophosphates (mg/l)            | 0,81     | 0,81     | 0,47  | 0,55     | 0,56     | 0,55  | 1,00     | 0,50     | 0,92   | 0,58  | 0,45  |
|                | Phosphore total (mg/l)            | 0,53     | 0,53     | 0,16  | 0,23     | 0,61     | 0,22  | 0,46     | 0,25     | 0,32   | 0,30  | 0,20  |
| Nutriments     | Ammonium (mg/l)                   | 0,15     | 0,15     | 0,09  | 0,43     | 0,07     | 0,02  | 0,05     | 0,08     | 0,08   | 0,07  | 0,05  |
|                | Nitrites (mg/l)                   | 0,14     | 0,14     | 0,26  | 0,04     | 0,04     | 0,03  | 0,07     | 0,04     | 0,05   | 0,12  | 0,03  |
|                | Nitrates (mg/l)                   | 19,20    | 19,20    | 18,70 | 18,00    | 15,00    | 21,00 | 17,00    | 14,80    | 23,60  | 34,60 | 40,00 |
| Acidification  | pH min                            | 8,00     | 8,00     | 7,00  | 7,80     | 7,80     | 7,81  | 7,05     | 7,60     | 7,75   | 7,40  | 7,70  |
| Acidification  | pH max                            | 8,50     | 8,50     | 8,20  | 8,10     | 8,10     | 8,20  | 8,00     | 8,36     | 8,50   | 8,00  | 8,00  |
| Salinité       | Conductivité min (µS/cm)          | 232      | 232      | 232   | 212      | 214      | 220   | 228      | 218      | 259    | 239   | 236   |
| Samme          | Conductivité max (µS/cm)          | 370      | 370      | 334   | 325      | 355      | 369   | 402      | 390      | 390    | 360   | 272   |
| Etat des paran | nètres physico-chimiques généraux | Médiocre | Médiocre | Bon   | Moyen    | Médiocre | Moyen | Médiocre | Médiocre | Moyen  | Moyen | Moyen |
|                |                                   |          |          |       |          |          |       |          |          |        |       |       |
|                |                                   | 2011     | 2012     | 2013  | 2014     | 2015     | 2016  | 2017     | 2018     | 2019   | 2020  | 2021  |
| Invertébrés    | 12M2                              |          |          |       |          | 0,50     |       |          |          |        | 0,54  | 0,70  |
|                | IBG-DCE                           | 7        | 1        |       |          | 15       | 1     |          |          |        |       | 17    |
| Diatomées      | IBD                               |          | 12,1     |       | 12,6     |          |       |          |          |        | 14,1  | 13,6  |
| Diatomees      | EQR                               |          | 0,51     | 7     | 0,54     |          |       |          |          |        | 0,65  | 0,61  |
| Macrophytes    | IBMR (EQR)                        |          |          |       |          |          |       |          |          |        |       |       |
| Poissons       | IPR                               |          |          |       |          |          |       |          |          |        |       |       |
| E              | tat biologique retenu             |          | Mauvais  |       |          | Bon      |       |          |          |        | Moyen | Moyen |
| Etat é         | cologique annuel retenu           | Moyen    | Mauvais  | Bon   | Médiocre | Moyen    | Moyen | Moyen    | Moyen    | Moyen  | Moyen | Moyer |

#### **INTERPRÉTATION DES RÉSULTATS**

En 2021, Loise à Salt en Donzy présent un état écologique moyen, les éléments diatomée et physico-chimiques étant déclassants.

L'analyse des paramètres physico-chimiques généraux dégage un état moyen, avec cependant une seule mesure sur les 6 campagnes dépassant le seuil de qualité en carbone organique dissous (COD). De plus, cette concentration ne semble pas provoquer l'eutrophisation du cours d'eau, la demande biologique en oxygène (DBO5) ne présentant pas de variations significatives.

Les analyses complémentaires réalisées sur les pesticides montrent la présence de nombreuses molécules.On note la présence de S-Métolachlore et de Diméthénamide, désherbants utilisés sur les cultures de maïs et de tournesol. Ces deux molécules ne sont relevées que durant la campagne de juin, situation cohérente avec la réglementation n'autorisant les périodes de traitement que de mars à juin. On remarque cependant la persistance dans l'environnement de deux molécules dérivées de la dégradation du Métolachlore, les Métolachlore OXA et ESA, cette dernière étant considérée par l'ANSES comme un métabolite pertinent pour le suivi des eaux de consommation humaine. La rémanence et les concentrations observées (jusqu'à 5 fois la concentration maximale de 0,1 µg/L pour de l'eau potable), font peser un risque sur la ressource en eau potable et pourraient entraîner la contamination des nappes phréatiques. Enfin on observe la présence d'AMPA, dérivé principale du glyphosate, avec un pic de concentration conséquent en fin d'été.

L'analyse diatomée indique un peuplement stable et équilibré, dominé par Navicula gregaria (NGRE -18%) et Rhoicosphenia abbreviata (RABB – 12%), deux taxons tolérants et caractéristiques des milieux fortement minéralisés et riches en nutriments pouvant indiquer une eutrophisation des eaux. L'indice IPS, plus sensible aux altérations physico-chimiques, confirme l'IBD et la présence d'une dégradation affectant l'élément diatomée.

L'analyse macro invertébrée indique de bonnes conditions pour le développement de la macrofaune. La mosaïque d'habitats diversifiée favorise la mise en place de la communauté et la présence de taxons fortement polluosensibles, comme les Chloroperlidae et les Perlodidae, indique l'absence de perturbation majeure. L'I2M2 ne mettant pas en avant de perturbation significative (état ≥ à bon), l'utilisation de l'outil diagnostic n'est pas pertinente.

L'analyse de la chronique de données physico-chimiques met en évidence une amélioration continue des paramètres relatifs au phosphore depuis 2017 et se poursuivant en 2021. À ce titre, avec un seul paramètre déclassant, l'année 2021 obtient les meilleurs résultats depuis 2013. Attention cependant aux apports en nitrates, en augmentation continue depuis 2018 et situé à un plus haut niveau historique en 2021. Si l'absence de données de 2016 a 2019 empêche de dégager une tendance significative, on observe une stabilisation de l'indice IBD en comparaison de la période 2012/2014, et une amélioration significative de l'indice Invertébrés, au plus haut de la chronique.





## **LOISE À FEURS (04010200)**

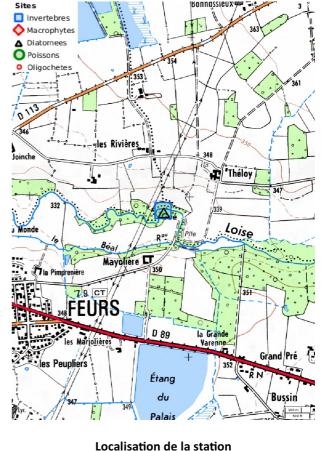
#### Caractéristiques de la station

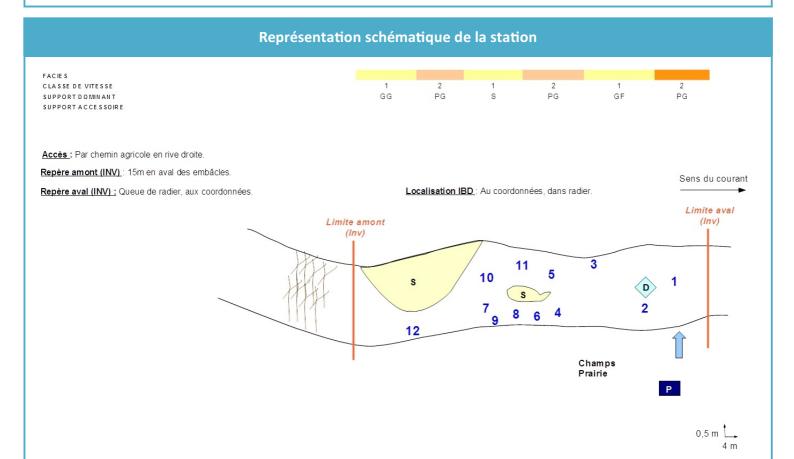
Nom du cours d'eau concerné: la Loise

Code masse d'eau: FRGR0173

Nom de la masse d'eau: LA LOISE ET SES AFFLUENTS DEPUIS LA

SOURCE JUSQU'A SA CONFLUENCE AVEC LA LOIRE


**Hydroécorégions:** 17 DEPRESSIONS SEDIMENTAIRES (HER2: 45)


Type de la masse d'eau: P3

| Coordonnées de la station en RGF93 / Lambert-93 (2154) |              |              |  |  |  |  |  |  |  |
|--------------------------------------------------------|--------------|--------------|--|--|--|--|--|--|--|
| X (longitude)                                          | Y (latitude) | Altitude (m) |  |  |  |  |  |  |  |
| 797248                                                 | 6517260      | 340          |  |  |  |  |  |  |  |



Vue globale Localisation de



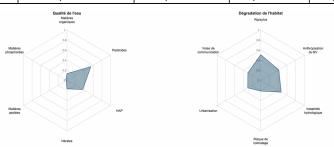




## **LOISE À FEURS (04010200)**

#### **PHYSICO-CHIMIE**

#### Paramètres physico-chimiques généraux (Arrêté du 27/07/2018)


| Mesure de débi | ts (m3/s)                         |  |  |  |
|----------------|-----------------------------------|--|--|--|
|                | Oxygène dissous (mg/l)            |  |  |  |
| Bilan de       | Taux sat. O2 dissous (%)          |  |  |  |
| l'oxygène      | DBO5 (mg O2/I)                    |  |  |  |
|                | Carbone organique dissous (mg/l)  |  |  |  |
| Température    | Température                       |  |  |  |
|                | Orthophosphates (mg/l)            |  |  |  |
|                | Phosphore total (mg/l)            |  |  |  |
| Nutriments     | Ammonium (mg/l)                   |  |  |  |
|                | Nitrites (mg/l)                   |  |  |  |
|                | Nitrates (mg/l)                   |  |  |  |
| Acidification  | pH min                            |  |  |  |
| Acidineation   | pH max                            |  |  |  |
| Salinité       | Conductivité min (µS/cm)          |  |  |  |
| Jannice        | Conductivité max (μS/cm)          |  |  |  |
| Etat des para  | mètres physico-chimiques généraux |  |  |  |

# Suivis non réalisés ou données non disponibles

| Pesticides (Présence par rapport aux limites de détection) |            |            |            |            |            |            |            |  |  |  |
|------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|--|--|--|
| Paramètre                                                  | 09/03/2021 | 12/04/2021 | 03/05/2021 | 07/06/2021 | 16/09/2021 | 06/10/2021 | 03/11/2021 |  |  |  |
| Cumul précipitations (H-48)                                | 2,4        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |  |  |  |
| Mesure de débits (m3/s)                                    | 0,353      | 0,707      | 0,607      | 0,312      | 0,192      | 0,1217     | 0,868      |  |  |  |
| 1221 - Métolachlor (+ S Métolachlor)                       | <0,02      | <0,02      | <0,02      | 0,023      | 0,039      | <0,02      | <0,02      |  |  |  |
| 1506 - Glyphosate                                          | <0,025     | 0,07       | <0,025     | <0,025     | 0,037      | <0,025     | <0,025     |  |  |  |
| 1678 - Diméthénamide + Diméthénamide - P                   | <0,01      | <0,01      | <0,01      | 0,111      | <0,01      | <0,01      | <0,01      |  |  |  |
| 1907 - AMPA                                                | 0,064      | 0,119      | 0,1        | 0,11       | 0,19       | 0,097      | 0,109      |  |  |  |
| 2544 - Dichlorprop + dichlorprop - p                       | <0,01      | 0,033      | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      |  |  |  |
| 6853 - Metolachlore OXA                                    | 0,114      | <0,01      | 0,021      | 0,037      | 0,039      | 0,072      | 0,054      |  |  |  |
| 6854 - Metolachlore ESA                                    | 0,699      | 0,349      | 0,241      | 0,477      | 0,437      | 0,506      | 0,564      |  |  |  |
| Les autres molécules suivies n'ont pas été détectées.      |            |            |            |            |            |            |            |  |  |  |

### BIOLOGIE (Arrêté du 27/07/2018)

# Eléments biologiquesINVERTEBRESIndice ShannonASPTPolyvoltinismeOvoviviparitéRichesseI2M20,200100,873300,607200,706100,692700,63210



| DIATOMEES | Richesse<br>spécifique | Indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |
|-----------|------------------------|-----------------------------|--------------|----------|----------|-------------|
|           | 26                     | 3,35                        | 0,71         | 11,5     | 10,6     | 0,4         |

État des éléments biologiques : Médiocre

État écologique retenu : Médiocre





## **LOISE À FEURS (04010200)**

|                                       |                                   |          | CHRC     | NIQU  | E DE D   | ONNÉ     | ES    |       |       |       |       |          |
|---------------------------------------|-----------------------------------|----------|----------|-------|----------|----------|-------|-------|-------|-------|-------|----------|
|                                       |                                   | 2011     | 2012     | 2013  | 2014     | 2015     | 2016  | 2017  | 2018  | 2019  | 2020  | 2021     |
|                                       | Oxygène dissous (mg/l)            | 6,50     | 6,50     | 8,00  | 7,70     | 7,10     | 6,60  | 6,10  | 7,90  | 9,20  | 7,50  |          |
| Bilan de                              | Taux sat. O2 dissous (%)          | 68,00    | 68,00    | 85,00 | 73,50    | 77,00    | 71,00 | 67,00 | 82,00 | 98,00 | 80,00 |          |
| l'oxygène                             | DBO5 (mg O2/I)                    | 6,00     | 6,00     | 3,00  | 1,70     | 3,80     | 2,70  | 2,30  | 1,60  | 1,70  | 4,00  |          |
|                                       | Carbone organique dissous (mg/l)  | 8,80     | 8,80     | 5,80  | 6,10     | 6,20     | 6,70  | 4,90  | 7,70  | 4,00  | 4,90  |          |
| Température                           | Température                       | 14,60    | 15,60    | 18,00 | 18,20    | 17,90    | 19,60 | 22,30 | 22,60 | 23,40 | 18,40 |          |
| · · · · · · · · · · · · · · · · · · · | Orthophosphates (mg/l)            | 0,93     | 0,93     | 0,50  | 0,39     | 0,50     | 0,49  | 0,48  | 0,46  | 0,58  | 0,36  |          |
|                                       | Phosphore total (mg/l)            | 0,56     | 0,56     | 0,18  | 0,17     | 0,55     | 0,17  | 0,22  | 0,24  | 0,19  | 0,13  |          |
| Nutriments                            | Ammonium (mg/l)                   | 0,50     | 0,50     | 0,11  | 0,08     | 0,14     | 0,15  | 0,11  | 0,05  | 0,05  | 0,04  |          |
|                                       | Nitrites (mg/l)                   | 0,22     | 0,22     | 0,37  | 0,07     | 0,14     | 0,17  | 0,09  | 0,04  | 0,04  | 0,06  |          |
|                                       | Nitrates (mg/l)                   | 20,10    | 20,10    | 16,00 | 18,00    | 13,00    | 21,00 | 17,00 | 44,30 | 24,50 | 17,30 |          |
| Acidification                         | pH min                            | 7,10     | 7,10     | 7,20  | 7,50     | 7,35     | 7,57  | 7,00  | 7,32  | 7,60  | 7,30  |          |
| Acidincation                          | pH max                            | 8,20     | 8,20     | 7,85  | 8,07     | 8,00     | 7,80  | 7,80  | 7,85  | 8,70  | 7,90  |          |
| Salinité                              | Conductivité min (µS/cm)          | 242      | 242      | 236   | 210      | 230      | 233   | 304   | 161   | 280   | 253   |          |
| Samme                                 | Conductivité max (µS/cm)          | 437      | 437      | 385   | 338      | 420      | 419   | 450   | 347   | 441   | 387   |          |
| Etat des paran                        | nètres physico-chimiques généraux | Médiocre | Médiocre | Moyen | Bon      | Médiocre | Bon   | Moyen | Moyen | Moyen | Bon   |          |
|                                       |                                   |          |          |       |          |          |       |       |       |       |       |          |
|                                       |                                   | 2011     | 2012     | 2013  | 2014     | 2015     | 2016  | 2017  | 2018  | 2019  | 2020  | 2021     |
| Invertébrés                           | 12M2                              |          |          |       |          |          |       |       |       |       |       | 0,63     |
| mvertebres                            | IBG-DCE                           | 14       | 13       | 14    | 15       | 7        | 7     |       |       |       |       | 20       |
| Diatomées                             | IBD                               | 12,7     | 10,9     | 13,7  | 12,2     |          |       |       |       |       |       | 10,6     |
| Diatomees                             | EQR                               | 0,55     | 0,42     | 0,62  | 0,51     | 7        | 7     |       | 7     |       | 7     | 0,40     |
| Macrophytes                           | IBMR (EQR)                        |          | 0,88     |       | 0,83     |          |       |       |       |       | 0,82  |          |
| Poissons                              | IPR                               | 16,61    |          | 18,22 |          | 15,67    |       | 19,84 |       |       |       |          |
| E                                     | tat biologique retenu             | Moyen    | Médiocre | Moyen | Médiocre | Très bon |       | Moyen |       |       | Bon   | Médiocre |
| Etat é                                | cologique annuel retenu           | Moyen    | Médiocre | Moyen | Médiocre | Moyen    | Bon   | Moyen | Moyen | Moyen | Bon   | Médiocre |

#### **INTERPRÉTATION DES RÉSULTATS**

En 2021, Loise à Feurs présente un état écologique médiocre, l'élément diatomée étant déclassant.

Les analyses physico-chimiques complémentaires sur les pesticides indiquent la présence de plusieurs molécules. La présence de Glyphosate est observée en mars et septembre en faible quantité. Cependant, l'AMPA, principale produit de la dégradation du glyphosate, est observé sur l'ensemble de l'année, soulignant la rémanence de ce composé et son rôle potentiel sur les écosystèmes. On retrouve également du S-Métolachlore et Diméthénamide, désherbants fréquemment utilisés sur les cultures de maïs et de tournesol notamment. En complément, on remarque la présence de Métolachlore OXA et ESA, deux molécules dérivées de la dégradation du Métolachlore. Or, le Métolachlore ESA, considéré par l'ANSES comme un métabolite pertinent pour le suivi des eaux de consommation humaine et ne devant donc à ce titre pas dépasser les 0,1 µg/L, ainsi que sa rémanence et les concentrations observées (jusqu'à 7 fois la concentration maximale pour de l'eau potable), font peser un risque sur la ressource en eau potable et pourraient entraîner la contamination des nappes phréatiques. Enfin on note la présence de Dichlorprop, herbicide interdit à l'usage en France depuis 2003.

L'analyse diatomée indique un peuplement stable et équilibré, dominé par Nitzchia soratensis (NSTS – 26%) et Fistulifera saprophila (FSAP – 17%), taxons caractérisants une eau eutrophe et riche en nutriments (NSTS) voire particulièrement polluorésistant et caractéristique des eaux fortement dégradées (FSAP). L'indice IPS, plus sensible aux altérations physico-chimiques, confirme la présence d'une dégradation affectant l'élément diatomée. On note également la présence d'un colmatage de formation biologique sur l'ensemble du site.

L'analyse macroinvertébré indique de bonnes conditions pour le développement de la macrofaune. On observe cependant un indice de Shannon altéré, en lien avec une forte concentration de Chironomidae, semblant indiquer des apports en matières organiques déstabilisant la communauté de macroinvertébrés. Cependant, on observe également la présence de taxons fortement polluosensible , comme les Chloroperlidae et les Perlodidae, témoignant de l'absence de forte perturbation et permettant d'obtenir une excellente métrique d'ASPT. L'I2M2 ne mettant pas en avant de perturbation significative (état ≥ à bon), l'utilisation de l'outil diagnostic n'est pas pertinente.

La chronique de données hydrobiologique reste parcellaire, cependant, on n'observe pas de variations significatives en comparaison des années aux suivis similaires (Invertébrés et Diatomées) de 2011 à 2014.





# RAU BERNAND À SAINT-JUST-LA-PENDUE (04407000)

#### Caractéristiques de la station

Invertebres

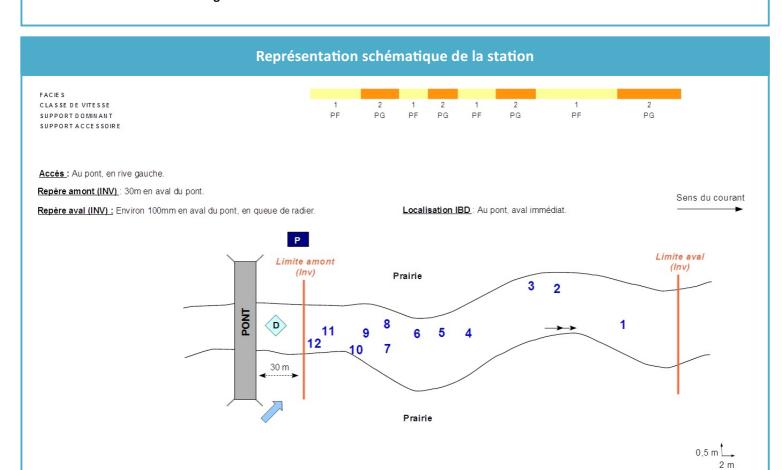
Macrophytes

Nom du cours d'eau concerné: le Bernand

Code masse d'eau: FRGR1598

Nom de la masse d'eau: LE BERNAND ET SES AFFLUENTS DEPUIS

LA SOURCE JUSQU'A LA RETENUE DE VILLEREST **Hydroécorégions:** 3 MASSIF CENTRAL SUD (HER2 : 86)


Type de la masse d'eau: TP3

| Coordonnées de la station en RGF93 / Lambert-93 (2154) |              |              |  |  |  |  |  |  |
|--------------------------------------------------------|--------------|--------------|--|--|--|--|--|--|
| X (longitude)                                          | Y (latitude) | Altitude (m) |  |  |  |  |  |  |
| 796062                                                 | 6530183      | 475          |  |  |  |  |  |  |



Vue globale

Localisation de la station

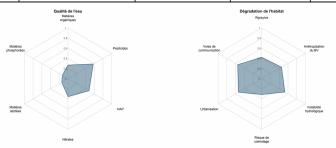




# **RAU BERNAND À SAINT-JUST-LA-PENDUE (04407000)**

## **PHYSICO-CHIMIE**

## Paramètres physico-chimiques généraux (Arrêté du 27/07/2018)


|                | Année                             | 19/01/2021 | 01/04/2021 | 17/06/2021 | 12/08/2021 | 09/09/2021 | 14/10/2021 |
|----------------|-----------------------------------|------------|------------|------------|------------|------------|------------|
| Mesure de débi | t (m3/s)                          | 0,401      | 0,019      | 0,004      | 0,009      | 0,005      | 0,022      |
|                | Oxygène dissous (mg/l)            | 12,10      | 11,30      | 8,78       | 9,00       | 8,60       | 9,90       |
| Bilan de       | Taux sat. O2 dissous (%)          | 100        | 101        | 96         | 98         | 93         | 97         |
| l'oxygène      | DBO5 (mg O2/I)                    | 1,40       | 0,50       | 1,20       | 0,50       | 0,00       | 1,10       |
|                | Carbone organique dissous (mg/l)  | 3,48       | 2,23       | 2,56       | 2,90       | 2,93       | 2,69       |
| Température    | Température                       | 5,20       | 8,40       | 17,20      | 17,30      | 16,50      | 7,70       |
|                | Orthophosphates (mg/l)            | 0,05       | 0,04       | 0,11       | 0,04       | 0,11       | 0,05       |
|                | Phosphore total (mg/l)            | 0,03       | 0,01       | 0,04       | 0,04       | 0,02       | 0,02       |
| Nutriments     | Ammonium (mg/l)                   | 0,05       | 0,09       | 0,09       | 0,06       | 0,05       | 0,05       |
|                | Nitrites (mg/l)                   | 0,02       | 0,02       | 0,02       | 0,02       | 0,00       | 0,00       |
|                | Nitrates (mg/I)                   | 28,10      | 8,58       | 4,88       | 5,11       | 1,96       | 6,16       |
| Acidification  | pH min                            | 7,00       | 8,20       | 7,80       | 7,50       | 7,80       | 7,90       |
| Acidification  | pH max                            | 7,00       | 8,20       | 7,80       | 7,50       | 7,80       | 7,90       |
| Salinité       | Conductivité min (µS/cm)          | 285        | 374        | 415        | 404        | 440        | 387        |
| Jannice        | Conductivité max (μS/cm)          | 285        | 374        | 415        | 404        | 440        | 387        |
| Etat des para  | mètres physico-chimiques généraux |            |            | Be         | on         |            |            |

| Pesticides (Présence par rapport aux limites de détection) |            |            |            |            |            |            |            |  |  |  |
|------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|--|--|--|
| Paramètre                                                  | 10/03/2021 | 12/04/2021 | 04/05/2021 | 08/06/2021 | 15/09/2021 | 05/10/2021 | 03/11/2021 |  |  |  |
| Cumul précipitations (H-48)                                | 2,4        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |  |  |  |
| Mesure de débit (m3/s)                                     | 0,022      | 0,057      | 0,085      | 0,038      | 0,014      | 0,164      | 0,067      |  |  |  |
| 6853 - Metolachlore OXA                                    | 0,011      | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      |  |  |  |
| 6854 - Metolachlore ESA                                    | 0,12       | 0,094      | 0,061      | 0,11       | 0,052      | 0,049      | 0,062      |  |  |  |
| Les autres molécules suivies n'ont pas été détecté         |            |            |            |            |            |            |            |  |  |  |

## BIOLOGIE (Arrêté du 27/07/2018)

#### Eléments biologiques

| INVERTEBRES | Indice<br>Shannon | ASPT    | Polyvoltinisme | Ovoviviparité | Richesse | 12M2    |
|-------------|-------------------|---------|----------------|---------------|----------|---------|
|             | 0,64360           | 0,49960 | 0,37880        | 0,36710       | 0,19050  | 0,41840 |



| DIATOMEES | Richesse<br>spécifique | Indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |
|-----------|------------------------|-----------------------------|--------------|----------|----------|-------------|
|           | 26                     | 3,34                        | 0,71         | 16       | 15,2     | 0,73        |

État des éléments biologiques : Moyen

État écologique retenu : Moyen





## **RAU BERNAND À SAINT-JUST-LA-PENDUE (04407000)**

| CHRONIQUE DE DONNÉES |                                   |       |          |       |       |          |       |       |       |         |         |       |
|----------------------|-----------------------------------|-------|----------|-------|-------|----------|-------|-------|-------|---------|---------|-------|
|                      |                                   | 2011  | 2012     | 2013  | 2014  | 2015     | 2016  | 2017  | 2018  | 2019    | 2020    | 2021  |
|                      | Oxygène dissous (mg/l)            |       |          |       |       |          |       |       |       |         | 7,50    | 8,78  |
| Bilan de             | Taux sat. O2 dissous (%)          |       |          |       |       |          |       |       |       |         | 81,80   | 96,00 |
| l'oxygène            | DBO5 (mg O2/I)                    |       |          |       |       |          |       |       |       |         | 1,30    | 1,40  |
|                      | Carbone organique dissous (mg/l)  |       |          |       |       |          |       |       |       |         | 3,50    | 3,48  |
| Température          | Température                       |       |          |       |       |          |       |       |       |         | 16,80   | 17,20 |
|                      | Orthophosphates (mg/l)            |       |          |       |       |          |       |       |       |         | 0,11    | 0,11  |
|                      | Phosphore total (mg/l)            |       |          |       |       |          |       |       |       |         | 0,05    | 0,04  |
| Nutriments           | Ammonium (mg/l)                   |       |          |       |       |          |       |       |       |         | 0,07    | 0,09  |
|                      | Nitrites (mg/l)                   |       |          |       |       |          |       |       |       |         | 0,03    | 0,02  |
|                      | Nitrates (mg/l)                   |       |          |       |       |          |       |       |       |         | 12,30   | 28,10 |
| Acidification        | pH min                            |       |          |       |       |          |       |       |       |         | 7,40    | 7,50  |
| Acidification        | pH max                            |       |          |       |       |          |       |       |       |         | 8,40    | 8,10  |
| Salinité             | Conductivité min (µS/cm)          |       |          |       |       |          |       |       |       |         | 320     | 285   |
| Saimite              | Conductivité max (µS/cm)          |       |          |       |       |          |       |       |       |         | 946     | 432   |
| Etat des parar       | mètres physico-chimiques généraux |       |          |       |       |          |       |       |       |         | Bon     | Bon   |
|                      |                                   |       |          |       |       |          |       |       |       |         |         |       |
|                      |                                   | 2011  | 2012     | 2013  | 2014  | 2015     | 2016  | 2017  | 2018  | 2019    | 2020    | 2021  |
| Invertébrés          | 12M2                              |       |          | _     |       |          |       |       |       |         | 0,39    | 0,42  |
|                      | IBG-DCE                           |       |          |       |       |          |       |       |       |         |         | 15    |
| Diatomées            | IBD                               |       |          | 15    |       |          | _     |       |       |         | 15,3    | 15,2  |
|                      | EQR                               |       |          | 0,71  |       |          |       |       |       |         | 0,74    | 0,73  |
| Macrophytes          | IBMR (EQR)                        |       |          |       |       |          |       |       |       |         |         |       |
| Poissons             | IPR                               | 23,74 | 27,51    | 22,10 | 16,51 | 30,11    | 24,51 | 25,36 |       | 44,08   | 44,9    |       |
|                      | Etat biologique retenu            | Moyen | Médiocre | Moyen | Moyen | Médiocre | Moyen | Moyen |       | Mauvais | Mauvais | Moyen |
| Etat é               | cologique annuel retenu           | Moyen | Médiocre | Moyen | Moyen | Médiocre | Moyen | Moyen | Moyen | Mauvais | Mauvais | Moyen |

#### **INTERPRÉTATION DES RÉSULTATS**

En 2021, le Rau Bernand à Saint-Just la Pendue présente un état écologique moyen, les compartiments invertébrés et diatomées étant déclassants.

L'analyse des paramètres physico-chimiques généraux dégage un état bon, avec 3 campagnes ne révélant aucune perturbation. On note que les variations d'orthophosphates ont lieu lors des deux campagnes présentant le plus faible débit, et pourraient donc avoir pour origine un apport constant, mis en relief par le faible débit, mais peu impactant à l'année. En plus d'une origine agricole, la proximité de l'autoroute et des bassins de rétentions peut-être envisagée comme source d'apports. Enfin on observe une hausse des apports en nitrates sur la campagne de janvier, cohérente avec le cycle naturel des matières azotées. L'analyse complémentaire des polluants spécifiques aux pesticides ne met en évidence que deux molécules, les Métolachlore OXA et ESA. Ces deux composés sont les dérivés principaux du S-métolachlore, désherbant utilisé sur les cultures de maïs et de tournesol, portant peu présentent sur ce bassin versant. Le Métolachlore ESA reste considéré par l'ANSES comme un métabolite pertinent pour le suivi des eaux de consommation humaine et ne devant donc à ce titre pas dépasser les 0,1 µg/L. Cette valeur étant dépassée à deux reprises (campagne de mars et juin) on observe un risque limité pour la ressource en eau potable et la nappe phréatique.

L'analyse diatomée indique un peuplement stable et équilibré, fortement dominé par Achnanthidium microcephalum (ADMC – 44%). Si l'écologie de ADMC, complexe récemment défini , ne permet pas d'identifier avec certitude l'origine de la perturbation, on note la présence en taxons accompagnateurs de Navicula Gregaria, complexe tolérant aux pollutions et présentant une large amplitude écologique, et de Fistulifera saprophila, particulièrement polluorésistante, confirmant la présence de perturbations impactant la communauté diatomique.

L'analyse macroinvertébrés présente également une situation impactée, avec une faible richesse taxonomique en dépit d'une mosaïque d'habitat variée et de la présence de supports biogènes. On observe également des métriques de polyvoltinisme et d'ovoviviparité dégradées, indiquant la présence de perturbations récurrentes impactant le peuplement. Cependant on note la présence sur la station de Perlodidae, taxon fortement polluosensible, permettant de conclure à des perturbations certes récurrentes mais de faible ampleurs. L'outil diagnostic ne permet pas de mettre en évidence de perturbation significative sur cette station.

L'analyse de la chronique de données ne met pas en évidence de fortes variations en comparaison de l'année 2020, avec cependant une amélioration globale de l'oxygénation du cours d'eau. Les indices biologiques calculés restent également stables.





0.2 m L

## Le Ternan à Virigneux (04407001)

#### Date d'édition: 07/01/2022

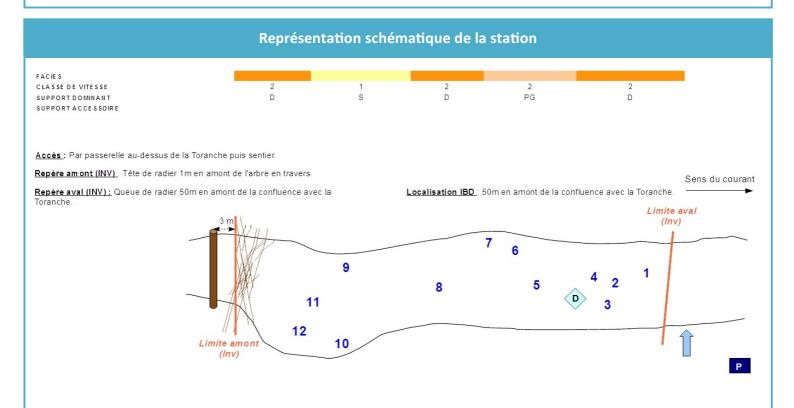
#### Caractéristiques de la station

Nom du cours d'eau concerné: Le Ternan

Code masse d'eau: FRGR1321

Nom de la masse d'eau: LA TORANCHE ET SES AFFLUENTS DEPUIS

LA SOURCE JUSQU'A SA CONFLUENCE AVEC LA LOIRE **Hydroécorégions:** 3 MASSIF CENTRAL SUD (HER2 : 86)


Type de la masse d'eau: TP3

| Coordonnée    | s de la station en RGF93 / Lambe | rt-93 (2154) |
|---------------|----------------------------------|--------------|
| X (longitude) | Y (latitude)                     | Altitude (m) |
| 802707        | 6509424                          | 0            |



Vue globale

Localisation de la station

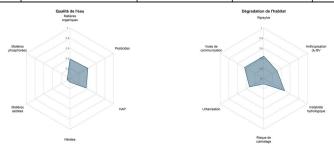




# Le Ternan à Virigneux (04407001)

## **PHYSICO-CHIMIE**

## Paramètres physico-chimiques généraux (Arrêté du 27/07/2018)


|                       | Année                             | 19/01/2021 | 31/03/2021 | 17/06/2021 | 12/08/2021 | 09/09/2021 | 14/10/2021 |  |  |
|-----------------------|-----------------------------------|------------|------------|------------|------------|------------|------------|--|--|
| Mesure de débi        | t (m3/s)                          | 0,076      | 0,004      | 0,001      | 0,005      | 0,002      | 0,005      |  |  |
|                       | Oxygène dissous (mg/l)            | 12,80      | 11,70      | 9,00       | 9,30       | 8,90       | 10,60      |  |  |
| Bilan de<br>l'oxygène | Taux sat. O2 dissous (%)          | 102        | 98         | 99         | 97         | 94         | 98         |  |  |
|                       | DBO5 (mg O2/I)                    | 2,00       | 0,70       | 0,60       | 0,90       | 0,80       | 1,50       |  |  |
|                       | Carbone organique dissous (mg/l)  | 6,30       | 3,65       | 3,26       | 3,95       | 3,18       | 3,42       |  |  |
| Température           | Température                       | 4,00       | 6,10       | 16,00      | 15,70      | 15,20      | 5,70       |  |  |
|                       | Orthophosphates (mg/l)            | 0,09       | 0,07       | 0,10       | 0,13       | 0,10       | 0,09       |  |  |
|                       | Phosphore total (mg/l)            | 0,06       | 0,02       | 0,05       | 0,06       | 0,05       | 0,04       |  |  |
| Nutriments            | Ammonium (mg/l)                   | 0,05       | 0,10       | 0,06       | 0,08       | 0,05       | 0,07       |  |  |
|                       | Nitrites (mg/l)                   | 0,02       | 0,02       | 0,02       | 0,02       | 0,02       | 0,02       |  |  |
|                       | Nitrates (mg/I)                   | 71,90      | 33,50      | 18,10      | 29,10      | 22,80      | 29,90      |  |  |
| Acidification         | pH min                            | 7,80       | 8,10       | 7,40       | 7,80       | 7,80       | 7,90       |  |  |
| Acidification         | pH max                            | 7,80       | 8,10       | 7,40       | 7,80       | 7,80       | 7,90       |  |  |
| Salinité              | Conductivité min (µS/cm)          | 377        | 447        | 405        | 446        | 477        | 471        |  |  |
| Saiiiile              | Conductivité max (µS/cm)          | 377        | 447        | 405        | 446        | 477        | 471        |  |  |
| Etat des para         | mètres physico-chimiques généraux | Moyen      |            |            |            |            |            |  |  |

| Pesticides (Présence par rapport aux limites de détection) |            |            |            |            |            |            |            |  |  |  |
|------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|--|--|--|
| Paramètre                                                  | 09/03/2021 | 12/04/2021 | 03/05/2021 | 07/06/2021 | 16/09/2021 | 06/10/2021 | 03/11/2021 |  |  |  |
| Cumul précipitations (H-48)                                | 2,4        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |  |  |  |
| Mesure de débit (m3/s)                                     | 0,003      | 0,007      | 0,012      | 0,003      | 0,003      | 0,014      | 0,013      |  |  |  |
| 6853 - Metolachlore OXA                                    | 0,051      | <0,01      | <0,01      | 0,014      | <0,01      | 0,033      | 0,013      |  |  |  |
| 6854 - Metolachlore ESA                                    | 0,479      | 0,234      | 0,155      | 0,27       | 0,272      | 0,366      | 0,393      |  |  |  |
| Les autres molécules suivies n'ont pas été détecté         | es.        |            |            |            |            |            |            |  |  |  |

## BIOLOGIE (Arrêté du 27/07/2018)

#### Eléments biologiques

| INVERTEBRES | Indice<br>Shannon | ASPT    | Polyvoltinisme | Ovoviviparité | Richesse | 12M2    |
|-------------|-------------------|---------|----------------|---------------|----------|---------|
|             | 0,86600           | 0,70840 | 0,62310        | 0,77090       | 0,23810  | 0,65610 |



| DIATOMEES | Richesse<br>spécifique | Indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |
|-----------|------------------------|-----------------------------|--------------|----------|----------|-------------|
|           | 33                     | 3,41                        | 0,68         | 15,6     | 15,1     | 0,72        |

État des éléments biologiques : Moyen

État écologique retenu : Moyen





## Le Ternan à Virigneux (04407001)

| CHRONIQUE DE DONNÉES |                                   |          |          |          |          |          |          |      |      |          |      |       |
|----------------------|-----------------------------------|----------|----------|----------|----------|----------|----------|------|------|----------|------|-------|
|                      |                                   | 2011     | 2012     | 2013     | 2014     | 2015     | 2016     | 2017 | 2018 | 2019     | 2020 | 2021  |
|                      | Oxygène dissous (mg/l)            |          |          |          |          |          |          |      |      |          |      | 8,90  |
| Bilan de             | Taux sat. O2 dissous (%)          |          |          |          |          |          |          |      |      |          |      | 94,00 |
| l'oxygène            | DBO5 (mg O2/I)                    |          |          |          |          |          |          |      |      |          |      | 2,00  |
|                      | Carbone organique dissous (mg/l)  |          |          |          |          |          |          |      |      |          |      | 6,30  |
| Température          | Température                       |          |          |          |          |          |          |      |      |          |      | 15,70 |
|                      | Orthophosphates (mg/l)            |          |          |          |          |          |          |      |      |          |      | 0,13  |
|                      | Phosphore total (mg/l)            |          |          |          |          |          |          |      |      |          |      | 0,06  |
| Nutriments           | Ammonium (mg/l)                   |          |          |          |          |          |          |      |      |          |      | 0,10  |
|                      | Nitrites (mg/l)                   |          |          |          |          |          |          |      |      |          |      | 0,02  |
|                      | Nitrates (mg/l)                   |          |          |          |          |          |          |      |      |          |      | 71,90 |
| Acidification        | pH min                            |          |          |          |          |          |          |      |      |          |      | 7,60  |
| ACIUITICATION        | pH max                            |          |          |          |          |          |          |      |      |          |      | 8,10  |
| Salinité             | Conductivité min (µS/cm)          |          |          |          |          |          |          |      |      |          |      | 377   |
| Samme                | Conductivité max (µS/cm)          |          |          |          |          |          |          |      |      |          |      | 477   |
| Etat des parai       | mètres physico-chimiques généraux |          |          |          |          |          |          |      |      |          |      | Moyen |
|                      |                                   |          |          |          |          |          |          |      |      |          |      |       |
|                      |                                   | 2011     | 2012     | 2013     | 2014     | 2015     | 2016     | 2017 | 2018 | 2019     | 2020 | 2021  |
| Invertébrés          | 12M2                              |          |          | _        |          |          |          |      | L    | L        |      | 0,66  |
|                      | IBG-DCE                           |          |          |          |          |          |          |      |      |          |      | 15    |
| Diatomées            | IBD                               |          |          | _        |          |          |          |      |      |          | _    | 15,1  |
|                      | EQR                               |          |          |          |          |          |          |      |      |          |      | 0,72  |
| Macrophytes          | IBMR (EQR)                        |          |          |          |          |          |          |      |      |          |      |       |
| Poissons             | IPR                               | 13,99    | 14,60    | 15,13    | 15,26    | 14,22    | 13,06    |      |      | 29,89    |      |       |
|                      | Etat biologique retenu            | Très bon |      |      | Médiocre |      | Moyen |
| Etat é               | cologique annuel retenu           | Très bon |      |      | Médiocre |      | Moyer |

#### INTERPRÉTATION DES RÉSULTATS

En 2021, le Ternan à Virigneux présente un état écologique moyen, les compartiments physicochimique et diatomée étant déclassant.

L'analyse des paramètres physico-chimiques généraux montre une situation plus nuancée, avec une seule campagne déclassante sur l'ensemble de l'année. Cette forte hausse des nitrates, circonscrite au mois de janvier, est cohérente avec le cycle naturel des matières azotées et correspond à la diminution du rôle tampon de la végétation riveraine en période hivernale.

L'analyse complémentaire des polluants spécifiques aux pesticides ne met en évidence que deux molécules, les Métolachlore OXA et ESA. Ces deux composés sont les dérivés principaux du S-métolachlore, désherbant utilisé sur les cultures de maïs et de tournesol. Cependant, le Métolachlore ESA reste à ce jour considéré par l'ANSES comme un métabolite pertinent pour le suivi des eaux de consommation humaine et ne devant donc à ce titre pas dépasser les 0,1 µg/L, cette valeur étant dépassée sur chacune des campagnes effectuées, on observe un risque important pour la ressource en eau potable et la nappe phréatique.

L'analyse diatomée indique un peuplement stable et équilibré, dominé par Cocconeis euglypta (CEUG-31%) et Achnanthidium microcephalum (ADMC -24%). La présence de CEUG, taxon ubiquiste caractérisant des milieux riches en matière organique et relativement pauvres en nutriments, semble indiquer la présence d'apports exogènes. L'indice IPS, plus sensibles aux altérations physico-chimiques du milieu, confirme la présence de perturbations impactant le compartiment diatomée.

L'analyse macroinvertébré présente une situation non impactée, avec notamment un indice de Shannon décrivant un peuplement équilibré. On remarque cependant une richesse taxonomique altérée, malgré la présence de supports biogènes et d'une mosaïque d'habitat favorable au développement de la macrofaune. Enfin on note la présence de Perlodidae, taxon fortement polluosensible, indiquant l'absence de perturbations impactant le compartiment macroinvertébrés. L'I2M2 ne mettant pas en avant de perturbation significative (état ≥ à bon), l'utilisation de l'outil diagnostic n'est pas pertinente.

L'analyse de la chronique des données ne permet pas de dégager de tendance significative quant à l'évolution de l'état du cours d'eau en raison de l'absence de donnée comparable.





## Le Fontbonne à Violay (04407007)

#### Date d'édition: 07/01/2022

#### Caractéristiques de la station

Nom du cours d'eau concerné: Le Fontbonne

Code masse d'eau: FRGR0173

Nom de la masse d'eau: LA LOISE ET SES AFFLUENTS DEPUIS LA

SOURCE JUSQU'A SA CONFLUENCE AVEC LA LOIRE **Hydroécorégions:** 3 MASSIF CENTRAL SUD (HER2 : 86)

Type de la masse d'eau: P3

| Coordonnée    | Coordonnées de la station en RGF93 / Lambert-93 (2154) |              |  |  |  |  |  |  |
|---------------|--------------------------------------------------------|--------------|--|--|--|--|--|--|
| X (longitude) | Y (latitude)                                           | Altitude (m) |  |  |  |  |  |  |
| 806851        | 6525957                                                | 0            |  |  |  |  |  |  |



Sites

Invertebres

Macrophytes

Diatomees

Poisons

Oligochetes

Chavanne

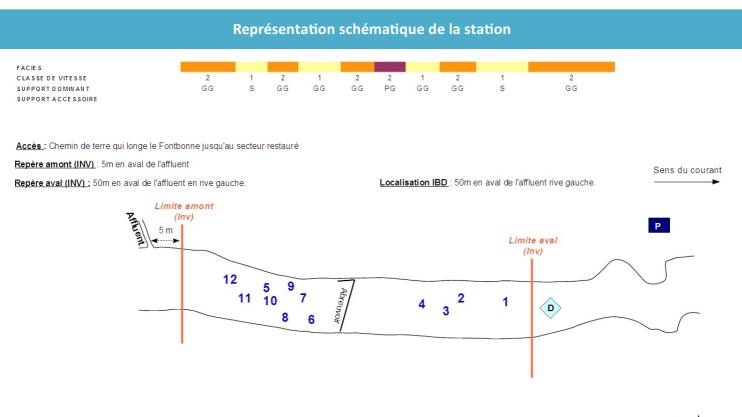
Cherblanc

Villette

705

744

763


Tet Signy

Bois de Montchervet

Regrandiat

Vue globale

Localisation de la station



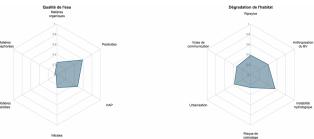


# Le Fontbonne à Violay (04407007)

## **PHYSICO-CHIMIE**

## Paramètres physico-chimiques généraux (Arrêté du 27/07/2018)

|                       |                                   | 19/01/2021 | 01/04/2021 | 17/06/2021 | 12/08/2021 | 09/09/2021 | 14/10/2021 |  |  |  |
|-----------------------|-----------------------------------|------------|------------|------------|------------|------------|------------|--|--|--|
| Mesure de débi        | t (m3/s)                          | 0,099      | 0,009      | 0,005      | 0,011      | 0,003      | 0,011      |  |  |  |
|                       | Oxygène dissous (mg/l)            | 11,40      | 11,50      | 8,90       | 9,10       | 9,00       | 9,90       |  |  |  |
| Bilan de<br>l'oxygène | Taux sat. O2 dissous (%)          | 96         | 100        | 96         | 97         | 96         | 97         |  |  |  |
|                       | DBO5 (mg O2/I)                    | 1,20       | 0,50       | 1,40       | 0,50       | 0,50       | 1,20       |  |  |  |
|                       | Carbone organique dissous (mg/l)  | 3,55       | 1,64       | 2,49       | 3,47       | 2,64       | 2,46       |  |  |  |
| Température           | Température                       | 5,10       | 6,50       | 15,50      | 15,70      | 14,90      | 7,50       |  |  |  |
|                       | Orthophosphates (mg/l)            | 0,05       | 0,04       | 0,08       | 0,06       | 0,08       | 0,04       |  |  |  |
|                       | Phosphore total (mg/l)            | 0,02       | 0,02       | 0,05       | 0,03       | 0,03       | 0,03       |  |  |  |
| Nutriments            | Ammonium (mg/l)                   | 0,05       | 0,11       | 0,06       | 0,11       | 0,05       | 0,07       |  |  |  |
|                       | Nitrites (mg/I)                   | 0,02       | 0,02       | 0,02       | 0,03       | 0,02       | 0,02       |  |  |  |
|                       | Nitrates (mg/l)                   | 35,30      | 17,50      | 13,30      | 15,60      | 15,60      | 18,20      |  |  |  |
| Acidification         | pH min                            | 6,80       | 7,60       | 7,50       | 6,90       | 7,90       | 7,30       |  |  |  |
| Acidification         | pH max                            | 6,80       | 7,60       | 7,50       | 6,90       | 7,90       | 7,30       |  |  |  |
| Salinité              | Conductivité min (μS/cm)          | 178        | 192        | 202        | 191        | 212        | 176        |  |  |  |
| Samme                 | Conductivité max (μS/cm)          | 178        | 192        | 202        | 191        | 212        | 176        |  |  |  |
| Etat des para         | mètres physico-chimiques généraux |            | Bon        |            |            |            |            |  |  |  |


| Pesticides (Présence par rapport aux limites de déte | ction) |
|------------------------------------------------------|--------|
|------------------------------------------------------|--------|

|                                                    | •          |            |            |            | •          |            |            |
|----------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|
| Paramètre                                          | 10/03/2021 | 12/04/2021 | 04/05/2021 | 08/06/2021 | 15/09/2021 | 05/10/2021 | 03/11/2021 |
| Cumul précipitations (H-48)                        | 2,4        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |
| Mesure de débit (m3/s)                             | 0,011      | 0,015      | 0,012      | 0,009      | 0,002      | 0,049      | 0,034      |
| 1288 - Trichlopyr                                  | <0,05      | <0,05      | <0,05      | <0,05      | 0,409      | <0,05      | <0,05      |
| 1709 - Piperonyl Butoxyde                          | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      | 0,011      |
| 1907 - AMPA                                        | <0,025     | <0,025     | <0,025     | <0,025     | 0,037      | <0,025     | <0,025     |
| 6853 - Metolachlore OXA                            | 0,058      | <0,01      | 0,028      | 0,038      | 0,032      | 0,093      | 0,05       |
| 6854 - Metolachlore ESA                            | 0,794      | 0,585      | 0,485      | 0,674      | 0,575      | 0,705      | 0,72       |
| Les autres molécules suivies n'ont pas été détecte | es.        |            |            |            |            |            |            |

## BIOLOGIE (Arrêté du 27/07/2018)

## Eléments biologiques

| INVERTEBRES | Indice<br>Shannon | ASPT    | Polyvoltinisme | Ovoviviparité | Richesse | 12M2    |
|-------------|-------------------|---------|----------------|---------------|----------|---------|
|             | 0,30810           | 0,83630 | 0,54020        | 0,62840       | 0,37990  | 0,56050 |



| DIATOMEES | Richesse<br>spécifique | Indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |
|-----------|------------------------|-----------------------------|--------------|----------|----------|-------------|
|           | 21                     | 2,62                        | 0,6          | 16       | 16,2     | 0,8         |

État des éléments biologiques : Bon

État écologique retenu : Bon





## Le Fontbonne à Violay (04407007)

|                | CHRONIQUE DE DONNÉES              |           |          |       |       |          |       |            |            |            |      |       |
|----------------|-----------------------------------|-----------|----------|-------|-------|----------|-------|------------|------------|------------|------|-------|
|                |                                   | 2011      | 2012     | 2013  | 2014  | 2015     | 2016  | 2017       | 2018       | 2019       | 2020 | 2021  |
|                | Oxygène dissous (mg/l)            |           |          |       |       |          |       |            |            |            |      | 8,90  |
| Bilan de       | Taux sat. O2 dissous (%)          |           |          |       |       |          |       |            |            |            |      | 96,00 |
| l'oxygène      | DBO5 (mg O2/I)                    |           |          |       |       |          |       |            |            |            |      | 1,40  |
|                | Carbone organique dissous (mg/l)  |           |          |       |       |          |       |            |            |            |      | 3,55  |
| Température    | Température                       |           |          |       |       |          |       |            |            |            |      | 15,60 |
|                | Orthophosphates (mg/l)            |           |          |       |       |          |       |            |            |            |      | 0,08  |
|                | Phosphore total (mg/l)            |           |          |       |       |          |       |            |            |            |      | 0,05  |
| Nutriments     | Ammonium (mg/l)                   |           |          |       |       |          |       |            |            |            |      | 0,11  |
|                | Nitrites (mg/l)                   |           |          |       |       |          |       |            |            |            |      | 0,03  |
|                | Nitrates (mg/l)                   |           |          |       |       |          |       |            |            |            |      | 35,30 |
| Acidification  | pH min                            |           |          |       |       |          |       |            |            |            |      | 6,90  |
| Acidification  | pH max                            |           |          |       |       |          |       |            |            |            |      | 7,70  |
| Salinité       | Conductivité min (µS/cm)          |           |          |       |       |          |       |            |            |            |      | 172   |
| Samme          | Conductivité max (µS/cm)          |           |          |       |       |          |       |            |            |            |      | 212   |
| Etat des param | nètres physico-chimiques généraux |           |          |       |       |          |       |            |            |            |      | Bon   |
|                | 1                                 | 2011      | 2012     | 2013  | 2014  | 2015     | 2016  | 2017       | 2018       | 2019       | 2020 | 2021  |
|                | I2M2                              | 2011      | 2012     | 2013  | 2014  | 2013     | 2010  | 2017       | 2010       | 2013       | 2020 | 0,56  |
| Invertébrés    | IBG-DCE                           | 7         | 7        | •     | 7     | 7        | 7     | r          | 7          | 7          | 7    | 16    |
|                | IBD                               |           |          |       |       |          |       |            |            |            |      | 16,2  |
| Diatomées      | EQR                               | 7         | 7        | •     | •     | •        | 7     | r          | r          | •          |      | 0,80  |
| Macrophytes    |                                   |           |          |       |       |          |       |            |            |            |      |       |
| Poissons       | IPR                               | 36,36     | 27,11    | 19,01 | 20,37 | 33,66    | 24,90 | 29,44      | 33,66      | 33,66      |      |       |
| E              | tat biologique retenu             | Mauvais   | Médiocre | Moyen | Moyen | Médiocre | Moyen | Médiocre   | Médiocre   | Médiocre   |      | Bon   |
| Etat 1         | cologiano ampuel retenu           | Manusia   | Mádioora | Mayor | Mayor | Mádiosus | Mayor | Mádiacra   | Mádiossa   | Mádiossa   |      | Por   |
| Etat é         | cologique annuel retenu           | iviauvais | Médiocre | Moyen | Moyen | Médiocre | woyen | iviediocre | iviediocre | iviediocre |      | Bon   |

#### **INTERPRÉTATION DES RÉSULTATS**

En 2021, le Fontbonne à Violay présente un état écologique bon.

L'analyse des paramètres physico-chimiques généraux indique un milieu de qualité, ne semblant pas subir de variation ponctuelle significative. On observe cependant une récurrence des apports en nitrates sur cette station, avec un pic sur la campagne de janvier, cohérent avec le cycle naturel en matière azotée, et correspondant à la diminution du rôle tampon de la végétation riveraine en période hivernale. Les analyses complémentaires réalisées sur les pesticides montrent la présence de nombreuses molécules. On y retrouve de manière ponctuelle et en faible concentration du Pipreonyl Butoxyde, composant synergique présent dans de nombreux pesticides, et de l'AMPA, principal dérivé produit par la dégradation du glyphosate.. On y retrouve également du Trichlopyr, désherbant principalement utilisé en agroforesterie pour l'élimination des broussailles, ronces et du lierre. Si le Trchlopyr n'est observé que durant une seule campagne, on observe une forte concentration susceptible d'avoir un impact sur le milieu aquatique, le Trichlopyr étant particulièrement néfaste pour la faune et la flore aquatique. Enfin on note la présence de Métolachlore OXA et ESA. Ces deux composés sont les dérivés principaux du S-métolachlore, désherbant utilisé sur les cultures de maïs et de tournesol. Cependant, le Métolachlore ESA reste à ce jour considéré par l'ANSES comme un métabolite pertinent pour le suivi des eaux de consommation humaine et ne devant donc à ce titre pas dépasser les 0,1 µg/L. Cette valeur étant fortement dépassée sur chacune des campagnes effectuées, on observe un risque important pour la ressource en eau potable et la nappe phréatique.

L'analyse diatomée indique un peuplement stable et équilibré, dominé par Achnanthidium minutissimum (ADMI - 42%) et Rhoicosphenia abbreviata (RABB 27%). La présence d'ADMI, complexe taxonomique dont le profil écologique est basé sur seulement quelques espèces ayant un très bon profil de polluosensibilité et pouvant ainsi entraîner une surestimation de la note. A ce titre, la présence de RABB ayant une affinité pour les milieux riches en nutriments peut indiquer une légère perturbation mais reste cohérente avec la proximité de la zone humide en rive droite. La note IPS, plus sensibles aux altérations physico-chimiques du milieu, confirme l'absence de perturbation majeures sur le compartiment diatomée. L'analyse macroinvertébré présente une bonne qualité globale mais aux métriques plus contrastées. On observe en effet des métriques de peuplement (Richesse taxonomique et Indice de Shannon) impactées, et ceci malgré une mosaïque d'habitats biogènes et diversifiés devant théoriquement favoriser le développement de la macrofaune. Cependant la bonne métrique d'ASPT, en lien avec la présence de taxons fortement polluosensibles comme les Chloroperlidae et les Perlodidae, témoigne de l'absence de perturbation relative à la qualité de l'eau sur la station.

L'analyse de la chronique des données ne permet pas de dégager de tendance significative quant à l'évolution de l'état du cours d'eau en raison de l'absence de donnée comparable.





## La Loise à Essertines-en-Donzy (04407008)

#### Caractéristiques de la station

Invertebres

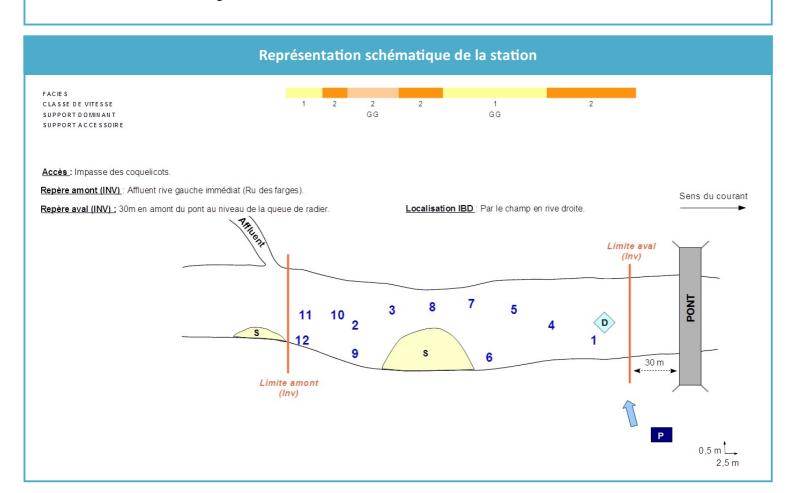
Nom du cours d'eau concerné: La Loise

Code masse d'eau: FRGR0173

Nom de la masse d'eau: LA LOISE ET SES AFFLUENTS DEPUIS LA

SOURCE JUSQU'A SA CONFLUENCE AVEC LA LOIRE **Hydroécorégions:** 3 MASSIF CENTRAL SUD (HER2 : 86)

Type de la masse d'eau: P3


| Coordonnées de la station en RGF93 / Lambert-93 (2154) |                           |   |  |  |  |  |  |  |  |
|--------------------------------------------------------|---------------------------|---|--|--|--|--|--|--|--|
| X (longitude)                                          | Y (latitude) Altitude (m) |   |  |  |  |  |  |  |  |
| 803845                                                 | 6518118                   | 0 |  |  |  |  |  |  |  |



Macrophytes chez Vial achal & ▲ Diatomees Poissons Oligochetes naitte Bietton chez Vacher e les Farges chez Leveau Poyoud 533 chez Michaud, chez Goubier chez Blanchard Pin du Loupa

Vue globale

Localisation de la station





# La Loise à Essertines-en-Donzy (04407008)

## **PHYSICO-CHIMIE**

## Paramètres physico-chimiques généraux (Arrêté du 27/07/2018)

|                |                                   | 19/01/2021 | 31/03/2021 | 17/06/2021 | 12/08/2021 | 09/09/2021 | 14/10/2021 |
|----------------|-----------------------------------|------------|------------|------------|------------|------------|------------|
| Mesure de débi | t (m3/s)                          | 0,909      | 0,137      | 0,020      | 0,019      | 0,009      | 0,146      |
|                | Oxygène dissous (mg/l)            | 12,90      | 11,20      | 8,12       | 8,91       | 7,70       | 10,30      |
| Bilan de       | Taux sat. O2 dissous (%)          | 100        | 96         | 88         | 97         | 82         | 99         |
| l'oxygène      | DBO5 (mg O2/I)                    | 1,90       | 1,10       | 0,50       | 0,90       | 0,50       | 1,80       |
|                | Carbone organique dissous (mg/l)  | 6,07       | 4,10       | 4,62       | 8,60       | 4,58       | 4,85       |
| Température    | Température                       | 2,90       | 6,90       | 16,80      | 17,40      | 15,90      | 6,80       |
|                | Orthophosphates (mg/l)            | 0,18       | 0,25       | 0,58       | 0,37       | 0,57       | 0,21       |
|                | Phosphore total (mg/l)            | 0,13       | 0,09       | 0,23       | 0,15       | 0,23       | 0,09       |
| Nutriments     | Ammonium (mg/l)                   | 0,07       | 0,14       | 0,12       | 0,05       | 0,05       | 0,08       |
|                | Nitrites (mg/I)                   | 0,03       | 0,11       | 0,12       | 0,07       | 0,04       | 0,04       |
|                | Nitrates (mg/l)                   | 37,00      | 15,50      | 11,10      | 9,10       | 10,70      | 10,50      |
| Acidification  | pH min                            | 7,30       | 7,80       | 7,40       | 7,10       | 7,60       | 7,60       |
| Acidification  | pH max                            | 7,30       | 7,80       | 7,40       | 7,10       | 7,60       | 7,60       |
| Salinité       | Conductivité min (µS/cm)          | 261        | 275        | 304        | 304        | 343        | 271        |
| Samile         | Conductivité max (μS/cm)          | 261        | 275        | 304        | 304        | 343        | 271        |
| Etat des para  | mètres physico-chimiques généraux |            |            | Мо         | yen        |            |            |

| Pesticides (                                       | Pesticides (Présence par rapport aux limites de détection) |            |            |            |            |            |            |  |  |  |  |  |
|----------------------------------------------------|------------------------------------------------------------|------------|------------|------------|------------|------------|------------|--|--|--|--|--|
| Paramètre                                          | 09/03/2021                                                 | 12/04/2021 | 03/05/2021 | 07/06/2021 | 16/09/2021 | 06/10/2021 | 03/11/2021 |  |  |  |  |  |
| Cumul précipitations (H-48)                        | 2,4                                                        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |  |  |  |  |  |
| Mesure de débit (m3/s)                             | 0,098                                                      | 0,156      | 0,091      | 0,083      | 0,049      | 0,291      | 0,175      |  |  |  |  |  |
| 1141 - 2,4 D                                       | <0,01                                                      | 0,678      | <0,01      | <0,01      | 0,015      | <0,01      | <0,01      |  |  |  |  |  |
| 1212 - 2,4 MCPA                                    | <0,01                                                      | 0,805      | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      |  |  |  |  |  |
| 1288 - Trichlopyr                                  | <0,05                                                      | <0,05      | <0,05      | <0,05      | 0,053      | <0,05      | <0,05      |  |  |  |  |  |
| 1506 - Glyphosate                                  | <0,025                                                     | 0,046      | <0,025     | <0,025     | 0,048      | <0,025     | 0,025      |  |  |  |  |  |
| 1678 - Diméthénamide + Diméthénamide - P           | <0,01                                                      | <0,01      | <0,01      | 0,125      | <0,01      | <0,01      | <0,01      |  |  |  |  |  |
| 1765 - Fluroxypir                                  | <0,02                                                      | 0,184      | <0,02      | <0,02      | <0,02      | <0,02      | <0,02      |  |  |  |  |  |
| 1907 - AMPA                                        | <0,025                                                     | 0,098      | 0,112      | 0,103      | 0,398      | 0,059      | 0,111      |  |  |  |  |  |
| 6853 - Metolachlore OXA                            | 0,157                                                      | <0,01      | 0,038      | 0,06       | 0,038      | 0,102      | 0,067      |  |  |  |  |  |
| 6854 - Metolachlore ESA                            | 0,798                                                      | 0,457      | 0,347      | 0,578      | 0,4        | 0,664      | 0,635      |  |  |  |  |  |
| Les autres molécules suivies n'ont pas été détecté | es.                                                        |            |            |            |            |            |            |  |  |  |  |  |

## BIOLOGIE (Arrêté du 27/07/2018)

#### Eléments biologiques

| NVERTEBRES | Indice<br>Shannon | ASPT    | Polyvoltinisme | Ovoviviparité | Richesse | 12M2    |
|------------|-------------------|---------|----------------|---------------|----------|---------|
|            | 0,49970           | 0,85670 | 0,47120        | 0,51870       | 0,40220  | 0,56090 |



| DIATOMEES | spécifique | indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |
|-----------|------------|-----------------------------|--------------|----------|----------|-------------|
|           | 24         | 3,03                        | 0,66         | 11,3     | 11,0     | 0,43        |

État des éléments biologiques : Médiocre

État écologique retenu : Médiocre





## La Loise à Essertines-en-Donzy (04407008)

| CHRONIQUE DE DONNÉES |                                   |       |          |       |       |       |          |       |       |      |      |          |
|----------------------|-----------------------------------|-------|----------|-------|-------|-------|----------|-------|-------|------|------|----------|
|                      |                                   | 2011  | 2012     | 2013  | 2014  | 2015  | 2016     | 2017  | 2018  | 2019 | 2020 | 2021     |
|                      | Oxygène dissous (mg/l)            |       |          |       |       |       |          |       |       |      |      | 8,00     |
| Bilan de             | Taux sat. O2 dissous (%)          |       |          |       |       |       |          |       |       |      |      | 87,00    |
| l'oxygène            | DBO5 (mg O2/I)                    |       |          |       |       |       |          |       |       |      |      | 1,90     |
|                      | Carbone organique dissous (mg/l)  |       |          |       |       |       |          |       |       |      |      | 8,60     |
| Température          | Température                       |       |          |       |       |       |          |       |       |      |      | 16,80    |
|                      | Orthophosphates (mg/l)            |       |          |       |       |       |          |       |       |      |      | 0,58     |
|                      | Phosphore total (mg/l)            |       |          |       |       |       |          |       |       |      |      | 0,23     |
| Nutriments           | Ammonium (mg/l)                   |       |          |       |       |       |          |       |       |      |      | 0,14     |
|                      | Nitrites (mg/l)                   |       |          |       |       |       |          |       |       |      |      | 0,12     |
|                      | Nitrates (mg/l)                   |       |          |       |       |       |          |       |       |      |      | 37,00    |
| Acidification        | pH min                            |       |          |       |       |       |          |       |       |      |      | 7,30     |
| Acidification        | pH max                            |       |          |       |       |       |          |       |       |      |      | 7,80     |
| Salinité             | Conductivité min (µS/cm)          |       |          |       |       |       |          |       |       |      |      | 256      |
| Samme                | Conductivité max (µS/cm)          |       |          |       |       |       |          |       |       |      |      | 310      |
| Etat des para        | nètres physico-chimiques généraux |       |          |       |       |       |          |       |       |      |      | Moyen    |
|                      |                                   |       |          |       |       |       |          |       |       |      |      |          |
|                      |                                   | 2011  | 2012     | 2013  | 2014  | 2015  | 2016     | 2017  | 2018  | 2019 | 2020 | 2021     |
| Invertébrés          | I2M2                              |       |          |       |       |       |          |       |       |      |      | 0,56     |
|                      | IBG-DCE                           |       |          |       |       |       |          |       |       |      |      | 17       |
| Diatomées            | IBD                               |       |          |       |       |       |          |       |       |      |      | 11       |
|                      | EQR                               |       |          |       |       |       |          |       |       |      |      | 0,43     |
| Macrophytes          | IBMR (EQR)                        |       |          |       |       |       |          |       |       |      |      |          |
| Poissons             | IPR                               | 19,67 | 15,45    | 16,70 | 17,67 | 17,08 | 15,63    | 18,22 | 17,86 |      |      |          |
|                      | Etat biologique retenu            | Moyen | Très bon | Moyen | Moyen | Moyen | Très bon | Moyen | Moyen |      |      | Médiocre |
| Etat é               | cologique annuel retenu           | Moyen | Très bon | Moyen | Moyen | Moyen | Très bon | Moyen | Moyen |      |      | Médiocr  |

#### **INTERPRÉTATION DES RÉSULTATS**

En 2021, la Loise à Essertines en Donzy présente un état biologique médiocre, les éléments diatomée et physicochimique étant déclassants.

L'analyse des paramètres physico-chimiques généraux montre des perturbations principalement en lien avec des apports en nutriment (Orthophosphate). Cependant seuls deux campagnes présentent de telles variations, permettant de relativiser l'importance de ses apports à l'année sur le cours d'eau. Les analyses complémentaires réalisées sur les pesticides montrent la présence de nombreuses molécules. On y retrouve de manière ponctuelle du 2,4 D, du 2,4 MCPA, du Trichlopyr , du Glyphosate, du Diméthénamide et du Fluroxypir. Si la présence de ces molécules, cantonnées aux campagnes de mars et de septembre, reste cohérente avec la législation en vigueur, les concentrations en 2,4D, perturbateur endocrinien et cancérogène probable sont bien supérieures aux limites prévues pour un usage à destination de la consommation humaine et font craindre une pollution de la ressource en eau et de la nappe phréatique. On retrouve également de l'AMPA, principal dérivé de la dégradation du glyphosate. Enfin on note la présence de Métolachlore OXA et ESA. Ces deux composés sont les dérivés principaux du S-métolachlore, désherbant utilisé sur les cultures de maïs et de tournesol. Cependant, le Métolachlore ESA reste à ce jour considéré par l'ANSES comme un métabolite pertinent pour le suivi des eaux de consommation humaine et ne devant donc à ce titre pas dépasser les 0,1 µg/L. Cette valeur étant fortement dépassée sur chacune des campagnes effectuées, on observe un risque important pour la ressource en eau potable et la nappe phréatique.

L'analyse diatomée indique un peuplement stable et équilibré, dominé par Navicula gregaria (NGRE - 42%) et Mayamaea permitis (MPMI 13%).La présence de NGRE, taxon tolérant aux variations, et surtout de MPMI, caractéristique des milieux dégradés et fortement chargés en matière organique, semble indiquer d'importantes perturbations en lien avec une eutrophisation du milieu. On observe également un développement de biofilm et un colmatage de formation biologique important sur les substrats, cohérent avec des apports exogènes en matière organique. L'analyse macroinvertébré présente une bonne qualité globale, en lien avec la présence de taxons polluosensibles, comme les Chloroperlidae et les Perlodidae, permettant d'obtenir une bonne métrique d'ASPT. Cependant, l'ensemble des autres métriques sont de qualités moyenne et témoignent de la présence de dégradation, à commencer par la richesse taxonomique et l'indice de Shannon. De même, la mosaïque d'habitat biogène et diversifié devant favoriser le développement de la macrofaune est altérée par un colmatage important diminuant les capacités biogènes du milieu. L'I2M2 ne mettant pas en avant de perturbation significative (état ≥ à bon), l'utilisation de l'outil diagnostic n'est pas pertinente.

L'analyse de la chronique des données ne permet pas de dégager de tendance significative quant à l'évolution de l'état du cours d'eau en raison de l'absence de donnée comparable.





## **RAU DES ODIBERTS À EPERCIEUX-SAINT-PAUL (04407009)**

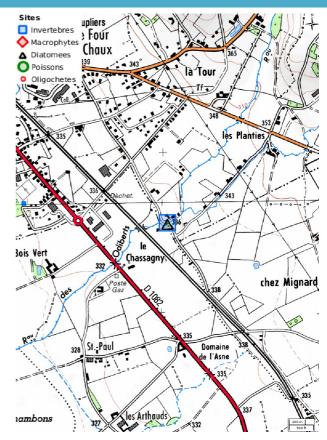
#### Caractéristiques de la station

Nom du cours d'eau concerné: les Odiberts

Code masse d'eau: FRGR1501

Nom de la masse d'eau: LES ODIBERTS ET SES AFFLUENTS DEPUIS

LA SOURCE JUSQU'A SA CONFLUENCE AVEC LA LOIRE


Hydroécorégions: 17 DEPRESSIONS SEDIMENTAIRES (HER2: 45)

Type de la masse d'eau: TP3

| Coordonnées de la station en RGF93 / Lambert-93 (2154) |              |              |  |  |  |  |  |  |  |
|--------------------------------------------------------|--------------|--------------|--|--|--|--|--|--|--|
| X (longitude)                                          | Y (latitude) | Altitude (m) |  |  |  |  |  |  |  |
| 793375                                                 | 6523970      | 340          |  |  |  |  |  |  |  |



Vue globale



Localisation de la station

0,3 m †

## Représentation schématique de la station FACIES CLASSE DE VITESSE SUPPORT DOMINANT GG SUPPORT ACCESSOIRE Accès : Au pont, en rive droite. Repère amont (INV): Au bâtiment en rive drite au niveau de la clôture en barbelés Sens du courant Localisation IBD: Radier en amont immédiat du pont. Repère aval (INV) : Queue radier, en amont immédiat du pont. Limite amont (Inv) 12 PONT 11 (D) 10 (Inv)

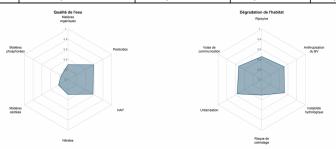


# RAU DES ODIBERTS À EPERCIEUX-SAINT-PAUL (04407009)

#### **PHYSICO-CHIMIE**

#### Paramètres physico-chimiques généraux (Arrêté du 27/07/2018)

| Mesure de débi | ts (m3/s)                         |  |  |  |  |
|----------------|-----------------------------------|--|--|--|--|
|                | Oxygène dissous (mg/l)            |  |  |  |  |
| Bilan de       | Taux sat. O2 dissous (%)          |  |  |  |  |
| l'oxygène      | DBO5 (mg O2/I)                    |  |  |  |  |
|                | Carbone organique dissous (mg/l)  |  |  |  |  |
| Température    | Température                       |  |  |  |  |
|                | Orthophosphates (mg/l)            |  |  |  |  |
|                | Phosphore total (mg/l)            |  |  |  |  |
| Nutriments     | Ammonium (mg/l)                   |  |  |  |  |
|                | Nitrites (mg/l)                   |  |  |  |  |
|                | Nitrates (mg/l)                   |  |  |  |  |
| Acidification  | pH min                            |  |  |  |  |
| Acidification  | pH max                            |  |  |  |  |
| Salinité       | Conductivité min (μS/cm)          |  |  |  |  |
| Jannie         | Conductivité max (µS/cm)          |  |  |  |  |
| Etat des parar | mètres physico-chimiques généraux |  |  |  |  |


# Suivis non réalisés ou données non disponibles

| Pesticides (Présence par rapport aux limites de détection) |            |            |            |            |            |            |            |  |  |  |
|------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|--|--|--|
| Paramètre                                                  | 10/03/2021 | 12/04/2021 | 04/05/2021 | 08/06/2021 | 15/09/2021 | 05/10/2021 | 03/11/2021 |  |  |  |
| Cumul précipitations (H-48)                                | 2,4        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |  |  |  |
| Mesure de débits (m3/s)                                    | 0,015      | 0,05       | 0,046      | 0,012      | 0,01       | 0,127      | 0,065      |  |  |  |
| 1907 - AMPA                                                | 0,091      | 0,294      | 0,121      | 0,112      | 0,445      | 0,056      | 0,088      |  |  |  |
| 1945 - Isoxaflutole                                        | <0,05      | 0,062      | <0,05      | <0,05      | <0,05      | <0,05      | <0,05      |  |  |  |
| 6854 - Metolachlore ESA                                    | 0,094      | 0,044      | 0,030      | 0,058      | 0,067      | 0,073      | 0,091      |  |  |  |

Les autres molécules suivies n'ont pas été détectées.

### BIOLOGIE (Arrêté du 27/07/2018)

# INVERTEBRES | Indice Shannon | Shannon | O,31590 | O,61560 | O,31750 | O,39180 | O,19050 | O,37970 | O,379



| DIATOMEES | Richesse<br>spécifique | Indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |
|-----------|------------------------|-----------------------------|--------------|----------|----------|-------------|
|           | 25                     | 3,72                        | 0,8          | 13,8     | 13,3     | 0,59        |

État des éléments biologiques : Moyen

État écologique retenu : Médiocre





## RAU DES ODIBERTS À EPERCIEUX-SAINT-PAUL (04407009)

| CHRONIQUE DE DONNÉES |                                   |      |         |      |         |      |          |      |          |         |      |       |
|----------------------|-----------------------------------|------|---------|------|---------|------|----------|------|----------|---------|------|-------|
|                      |                                   | 2011 | 2012    | 2013 | 2014    | 2015 | 2016     | 2017 | 2018     | 2019    | 2020 | 2021  |
|                      | Oxygène dissous (mg/l)            |      |         |      | 7,40    |      |          |      | 5,42     | 7,70    |      |       |
| Bilan de             | Taux sat. O2 dissous (%)          |      |         |      | 75,00   |      |          |      | 59,80    | 77,70   |      |       |
| l'oxygène            | DBO5 (mg O2/I)                    |      |         |      | 2,60    |      |          |      | 2,20     | 2,40    |      |       |
|                      | Carbone organique dissous (mg/l)  |      |         |      | 5,10    |      |          |      | 4,60     | 5,30    |      |       |
| Température          | Température                       |      |         |      | 15,90   |      |          |      | 18,50    | 15,20   |      |       |
|                      | Orthophosphates (mg/l)            |      |         |      | 0,84    |      |          |      | 0,48     | 0,57    |      |       |
|                      | Phosphore total (mg/l)            |      |         |      | 0,32    |      |          |      | 0,21     | 0,28    |      |       |
| Nutriments           | Ammonium (mg/l)                   |      |         |      | 0,13    |      |          |      | 0,05     | 0,05    |      |       |
|                      | Nitrites (mg/l)                   |      |         |      | 0,23    |      |          |      | 0,06     | 0,07    |      |       |
|                      | Nitrates (mg/l)                   |      |         |      | 8,90    |      |          |      | 12,20    | 26,00   |      |       |
| Acidification        | pH min                            |      |         |      | 7,25    |      |          |      | 7,40     | 7,50    |      |       |
|                      | pH max                            |      |         |      | 7,70    |      |          |      | 7,90     | 7,80    |      |       |
| Salinité             | Conductivité min (µS/cm)          |      |         |      | 234     |      |          |      | 276      | 267     |      |       |
|                      | Conductivité max (µS/cm)          |      |         |      | 430     |      |          |      | 536      | 529     |      |       |
| Etat des paran       | nètres physico-chimiques généraux |      |         |      | Moyen   |      |          |      | Moyen    | Moyen   |      |       |
|                      | i                                 | 2011 | 2012    | 2013 | 2014    | 2015 | 2016     | 2017 | 2018     | 2019    | 2020 | 2021  |
|                      | 12M2                              | 2011 | 2012    | 2010 | 2011    | 2013 | 2010     | 2017 | 2010     | 0,44    | 2020 | 0,38  |
| Invertébrés          | IBG-DCE                           | 7    | 13      | 7    | 14      | 7    | <b>r</b> | 7    | <b>*</b> | 7       | 7    | 16    |
| Diatomées            | IBD                               |      | 13,2    |      | 20      |      |          |      | 14,3     | 14,5    |      | 13,3  |
| Diatomees            | EQR                               | 7    | 0,59    | •    | 1,07    | 7    |          |      | 0,66     | 0,68    | 7    | 0,59  |
| Macrophytes          | IBMR (EQR)                        |      |         |      |         |      |          |      |          | 0,86    |      |       |
| Poissons             | IPR                               |      | 43,40   |      | 44,04   |      |          |      | 43,91    | 43,98   |      |       |
|                      | Etat biologique retenu            |      | Mauvais |      | Mauvais |      |          |      | Mauvais  | Mauvais |      | Moyen |
| Etat é               | cologique annuel retenu           |      | Mauvais |      | Mauvais |      |          |      | Mauvais  | Mauvais |      | Moyen |

#### INTERPRÉTATION DES RÉSULTATS

En 2021, le rau des Odibert à Epercieux Saint-Paul présente un état écologique médiocre, les éléments biologiques étant déclassant.

Les analyses physico-chimiques complémentaires sur les pesticides indiquent la présence de plusieurs molécules. On retrouve la présence ponctuelle d'Isoxaflutole, désherbant contre les graminées utilisé notamment sur les cultures de maïs, et dont la présence sur la campagne d'avril reste cohérente avec les périodes de traitement des cultures. On observe également à l'année la présence d'AMPA, principal dérivé de la dégradation du glyphosate. Enfin on note la présence de Métolachlore ESA, produit de dégradation du S-Métolachlore utilisé sur les cultures de maïs et de tournesol. Cependant, aucune campagne ne révèle une concentration supérieure à 0,1 µg/L, valeur considéré par l'ANSES comme concentration maximale pour les eaux de consommation humaine.

L'analyse diatomée indique un peuplement stable et équilibré, dominé par Nitzschia soratensis (NSTS – 24%) et Achnanthidium microcephalum (ADMC -18%). La présence de NSTS permet de caractériser des eaux légèrement eutrophes, modérément à riches en nutriment.

La note IPS, plus sensible aux altérations physico-chimiques du milieu, confirme la présence de perturbation impactant le compartiment diatomée.

L'analyse macroinvertébré présente également une situation impactée, en particulier une faible richesse taxonomique, en partie dû à l'absence des supports les plus biogènes au sein de la mosaïque d'habitats. Les métriques de Shannon, de polyvoltinisme et d'ovoviviparité indiquent un peuplement en partie déséquilibré, en lien avec des perturbations récurrentes affectant directement le peuplement macroinvertébrés. L'outil diagnostic met en évidence le rôle potentiel des HAP sur la qualité de l'eau, ainsi qu'un risque associé à l'urbanisation et aux voies de communication sur la qualité de l'habitat.

L'analyse de la chronique de données ne permet pas de déduire une évolution sur la qualité du rau des Odiberts à Epercieux Saint-Paul, en l'absence de données sur les nutriments, paramètre physico-chimique déclassant les années précédentes ainsi que de pêche électrique. On observe d'ailleurs une diminution peu significative des indices I2M2 et IBD en comparaison de la campagne 2019.



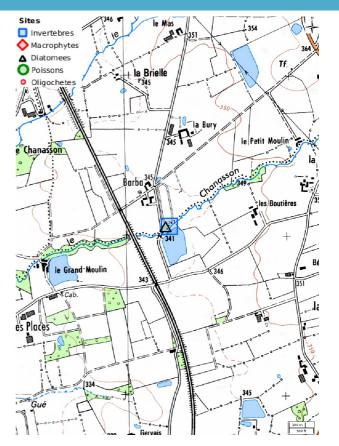


## **GOURTAROU À CIVENS (04407012)**

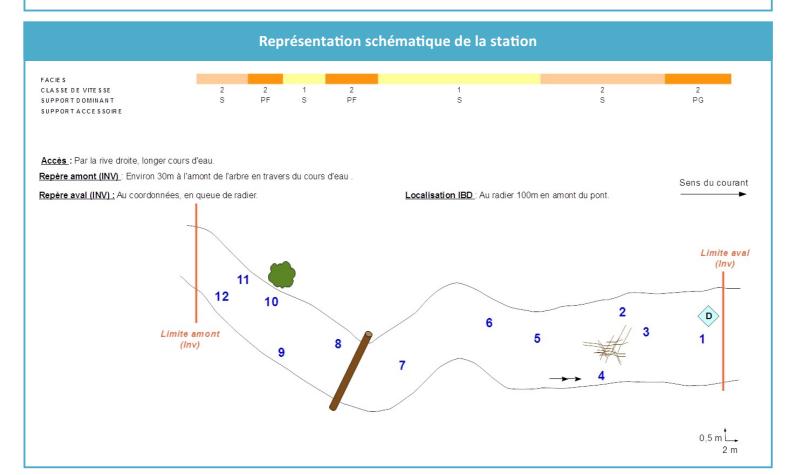
#### Caractéristiques de la station

Nom du cours d'eau concerné: le Gourtarou

Code masse d'eau: FRGR1452


**Nom de la masse d'eau:** LE GOURTAROU ET SES AFFLUENTS DEPUIS LA SOURCE JUSQU'A SA CONFLUENCE AVEC LA LOIRE **Hydroécorégions:** 17 DEPRESSIONS SEDIMENTAIRES (HER2 : 45)

Type de la masse d'eau: TP3


| Coordonnées de la station en RGF93 / Lambert-93 (2154) |              |              |  |  |  |  |  |  |
|--------------------------------------------------------|--------------|--------------|--|--|--|--|--|--|
| X (longitude)                                          | Y (latitude) | Altitude (m) |  |  |  |  |  |  |
| 795526                                                 | 6520378      | 344          |  |  |  |  |  |  |



Vue globale



Localisation de la station





# **GOURTAROU À CIVENS (04407012)**

#### **PHYSICO-CHIMIE**

#### Paramètres physico-chimiques généraux (Arrêté du 27/07/2018)

| r              |                                   |
|----------------|-----------------------------------|
|                |                                   |
| Mesure de débi | ts (m3/s)                         |
|                | Oxygène dissous (mg/l)            |
| Bilan de       | Taux sat. O2 dissous (%)          |
| l'oxygène      | DBO5 (mg O2/I)                    |
|                | Carbone organique dissous (mg/l)  |
| Température    | Température                       |
|                | Orthophosphates (mg/l)            |
|                | Phosphore total (mg/l)            |
| Nutriments     | Ammonium (mg/l)                   |
|                | Nitrites (mg/l)                   |
|                | Nitrates (mg/l)                   |
| Acidification  | pH min                            |
| Acidification  | pH max                            |
| Salinité       | Conductivité min (µS/cm)          |
| Jannice        | Conductivité max (µS/cm)          |
| Etat des para  | mètres physico-chimiques généraux |

# Suivis non réalisés ou données non disponibles

| Pesticides (                                       | Pesticides (Présence par rapport aux limites de détection) |            |            |            |            |            |            |  |  |  |  |  |
|----------------------------------------------------|------------------------------------------------------------|------------|------------|------------|------------|------------|------------|--|--|--|--|--|
| Paramètre                                          | 09/03/2021                                                 | 12/04/2021 | 03/05/2021 | 08/06/2021 | 15/09/2021 | 05/10/2021 | 03/11/2021 |  |  |  |  |  |
| Cumul précipitations (H-48)                        | 2,4                                                        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |  |  |  |  |  |
| Mesure de débits (m3/s)                            | 0,034                                                      | 0,051      | 0,059      | 0,028      | 0,049      | 0,094      | 0,048      |  |  |  |  |  |
| 1141 - 2,4 D                                       | <0,01                                                      | 0,012      | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      |  |  |  |  |  |
| 1221 - Métolachlor (+ S Métolachlor)               | <0,02                                                      | <0,02      | <0,02      | 0,052      | <0,02      | <0,02      | <0,02      |  |  |  |  |  |
| 1288 - Trichlopyr                                  | <0,05                                                      | <0,05      | <0,05      | <0,05      | 0,088      | <0,05      | <0,05      |  |  |  |  |  |
| 1506 - Glyphosate                                  | 0,058                                                      | 0,078      | <0,025     | 0,036      | 0,265      | 0,055      | 0,05       |  |  |  |  |  |
| 1694 - Tebuconazole                                | <0,01                                                      | <0,01      | <0,01      | <0,01      | 0,012      | <0,01      | <0,01      |  |  |  |  |  |
| 1907 - AMPA                                        | 0,265                                                      | 0,426      | 0,364      | 0,382      | 0,907      | 0,273      | 0,387      |  |  |  |  |  |
| 6853 - Metolachlore OXA                            | 0,197                                                      | <0,01      | 0,031      | 0,092      | 0,048      | 0,132      | 0,084      |  |  |  |  |  |
| 6854 - Metolachlore ESA                            | 0,871                                                      | 0,529      | 0,366      | 0,620      | 0,281      | 0,896      | 0,708      |  |  |  |  |  |
| Les autres molécules suivies n'ont pas été détecté | es.                                                        | •          |            |            |            |            |            |  |  |  |  |  |

### BIOLOGIE (Arrêté du 27/07/2018)

# Eléments biologiquesINVERTEBRESIndice ShannonASPTPolyvoltinismeOvoviviparitéRichesseI2M20,005400,600300,368500,436900,119000,33370



| DIATOMEES | Richesse<br>spécifique | Indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |  |
|-----------|------------------------|-----------------------------|--------------|----------|----------|-------------|--|
|           | 24                     | 3,36                        | 0,73         | 12,1     | 11,9     | 0,49        |  |

État des éléments biologiques : Médiocre

État écologique retenu : Médiocre





## **GOURTAROU À CIVENS (04407012)**

| CHRONIQUE DE DONNÉES |                                   |      |      |      |      |          |         |      |          |         |      |          |
|----------------------|-----------------------------------|------|------|------|------|----------|---------|------|----------|---------|------|----------|
|                      |                                   | 2011 | 2012 | 2013 | 2014 | 2015     | 2016    | 2017 | 2018     | 2019    | 2020 | 2021     |
|                      | Oxygène dissous (mg/l)            |      |      |      |      |          | 2,60    |      | 5,90     |         |      |          |
| Bilan de             | Taux sat. O2 dissous (%)          |      |      |      |      |          | 28,00   |      | 60,10    |         |      |          |
| l'oxygène            | DBO5 (mg O2/I)                    |      |      |      |      |          | 1,50    |      | 2,30     |         |      |          |
|                      | Carbone organique dissous (mg/l)  |      |      |      |      |          | 4,50    |      | 8,80     |         |      |          |
| Température          | Température                       |      |      |      |      |          | 17,50   |      | 20,00    |         |      |          |
|                      | Orthophosphates (mg/l)            |      |      |      |      |          | 1,70    |      | 1,20     |         |      |          |
|                      | Phosphore total (mg/l)            |      |      |      |      |          | 0,54    |      | 0,37     |         |      |          |
| Nutriments           | Ammonium (mg/l)                   |      |      |      |      |          | 0,23    |      | 0,11     |         |      |          |
|                      | Nitrites (mg/l)                   |      |      |      |      |          | 0,21    |      | 0,17     |         |      |          |
|                      | Nitrates (mg/l)                   |      |      |      |      |          | 24,70   |      | 23,40    |         |      |          |
| Acidification        | pH min                            |      |      |      |      |          | 7,20    |      | 7,50     |         |      |          |
| Acidification        | pH max                            |      |      |      |      |          | 8,20    |      | 7,90     |         |      |          |
| Salinité             | Conductivité min (µS/cm)          |      |      |      |      |          | 240     |      | 254      |         |      |          |
| Samme                | Conductivité max (µS/cm)          |      |      |      |      |          | 505     |      | 680      |         |      |          |
| Etat des paran       | nètres physico-chimiques généraux |      |      |      |      |          | Mauvais |      | Médiocre |         |      |          |
|                      |                                   |      |      |      |      |          |         |      |          |         |      |          |
|                      |                                   | 2011 | 2012 | 2013 | 2014 | 2015     | 2016    | 2017 | 2018     | 2019    | 2020 | 2021     |
| Invertébrés          | 12M2                              |      |      |      | L    | L        | 0,37    |      | 0,34     |         |      | 0,33     |
|                      | IBG-DCE                           |      |      |      |      | ſ        | 15      |      | 14       |         |      | 15       |
| Diatomées            | IBD                               |      |      |      |      |          | 13,6    |      | 14,6     |         |      | 11,9     |
|                      | EQR                               |      |      |      |      |          | 0,61    |      | 0,69     |         |      | 0,49     |
| Macrophytes          |                                   |      |      |      |      |          | 1,07    |      | 0,98     |         |      |          |
| Poissons             | IPR                               |      |      |      |      | 12,86    |         |      |          |         |      |          |
|                      | tat biologique retenu             |      |      |      |      | Très bon | Moyen   |      | Moyen    | Mauvais |      | Médiocre |
|                      |                                   |      |      |      |      |          |         |      |          |         |      |          |
| Etat é               | cologique annuel retenu           |      |      |      |      | Très bon | Moyen   |      | Moyen    |         |      | Médiocre |

#### **INTERPRÉTATION DES RÉSULTATS**

En 2021, le Gourtarou à Civens présente un état écologique médiocre, les éléments diatomée et macroinvertébré étant déclassants.

Les analyses physicochimiques complémentaires sur les pesticides indiquent la présence de plusieurs molécules. On retrouve de manière ponctuelle et en faible concentration du 2,4 D et du S-Métolachlore (désherbant pour culture de maïs et tournesol), du Trichlopyr (traitement des broussailles et entretien des parcelles arborées) et du Tebuconazole (Fongicide). On signale également une forte présence de Glyphosate et surtout de l'AMPA, principal dérivé de sa dégradation dans l'environnement. Enfin on note la présence de deux dérivés issues du S-Métolachlore, le Métolachlore OXA et ESA. Cependant, le Métolachlore ESA reste à ce jour considéré par l'ANSES comme un métabolite pertinent pour le suivi des eaux de consommation humaine et ne devant donc à ce titre pas dépasser les 0,1 µg/L. Cette valeur étant dépassée sur chacune des campagnes effectuées (jusqu'à 9 fois la dose maximale), on observe un risque important pour la ressource en eau potable et la nappe phréatique.

L'analyse diatomée indique un peuplement stable et équilibré, dominé par Gomphonema pumilum (GPRI – 28%) et Navicula lanceolata (NLAN- 14%). Ces deux taxons caractérisent une eau de qualité moyenne à médiocre, principalement en lien avec des apports en nutriments et sont présentes dans des eaux jusqu'à bétamesosaprobe ou de meilleures qualités. L'indice IPS, plus sensible aux variations physico-chimiques du milieu, confirme la présence de perturbation impactant le compartiment diatomée.

L'analyse macroinvertébré présente également une situation impactée, en particulier une faible richesse spécifique et un indice de Shannon fortement dégradé, traduisant un peuplement fortement déséquilibré. Si la présence de taxons polluosensibles, comme les Perlodidae, semble indiquer que le peuplement est limité par une mosaïque d'habitat dominée par un support peu biogène (Sable et limons), on note une forte proportion au sein du peuplement d'organisme broyeurs de sédiment (Chrinonomidae et oligochètes) semblant indiquer un rôle important des apports en matière organique exogène dans la structure du peuplement. L'outil diagnostic indique des risques multifactoriels pouvant induire des perturbations de la qualité de l'eau (matières azotées et HAP) et de l'habitat (urbanisation et voies de communication).

L'analyse de la chronique de données ne permet pas de déduire une évolution sur la qualité du Gourtarou à Civens, en l'absence de données sur les nutriments, paramétré physico-chimique généralement déclassant au sein de la chronique. On observe cependant une amélioration continue du bilan de l'oxygène depuis 2016. Pour le compartiment biologique, on observe une détérioration de la qualité du cours d'eau consécutive au déclassement de l'IBD, 2021 obtenant le résultat le plus bas de la chronique sur ce compartiment.





## Le Chanasson à Civens (04407016)

#### Date d'édition: 07/01/2022

#### Caractéristiques de la station

Invertebres

Macrophytes

Nom du cours d'eau concerné: Le Chanasson

Code masse d'eau: FRGR1452

Nom de la masse d'eau: LE GOURTAROU ET SES AFFLUENTS

DEPUIS LA SOURCE JUSQU'A SA CONFLUENCE AVEC LA LOIRE

**Hydroécorégions:** 3 MASSIF CENTRAL SUD (HER2 : 86)

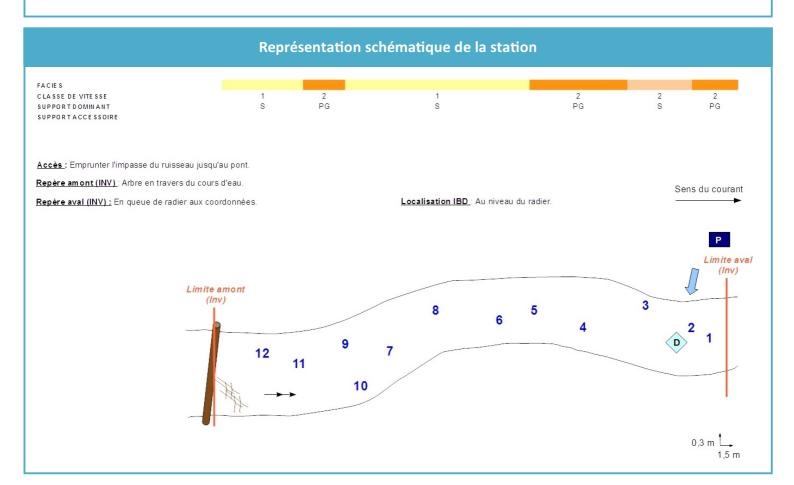
Type de la masse d'eau: TP3

| Coordonnée    | Coordonnées de la station en RGF93 / Lambert-93 (2154) |              |  |  |  |  |  |  |  |
|---------------|--------------------------------------------------------|--------------|--|--|--|--|--|--|--|
| X (longitude) | Y (latitude)                                           | Altitude (m) |  |  |  |  |  |  |  |
| 797573        | 6521790                                                | 0            |  |  |  |  |  |  |  |



Poissons
Oligochetes

Nontiean


Hontiean

He Colombier

Randan

Vue globale

Localisation de la station





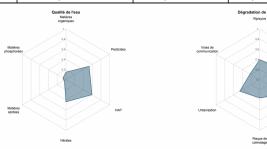
# Le Chanasson à Civens (04407016)

#### **PHYSICO-CHIMIE**

#### Paramètres physico-chimiques généraux (Arrêté du 27/07/2018)

|                |                                   | 19/01/2021 | 31/03/2021 | 17/06/2021 | 12/08/2021 | 09/09/2021 | 14/10/2021 |
|----------------|-----------------------------------|------------|------------|------------|------------|------------|------------|
| Mesure de débi | ts (m3/s)                         | 0,235      | 0,017      | 0,009      | 0,000      | 0,001      | 0,014      |
|                | Oxygène dissous (mg/l)            | 12,90      | 11,50      | 8,15       | 9,20       | 8,40       | 10,40      |
| Bilan de       | Taux sat. O2 dissous (%)          | 101        | 98         | 89         | 100        | 89         | 100        |
| l'oxygène      | DBO5 (mg O2/I)                    | 2,30       | 0,60       | 2,10       | 1,90       | 0,80       | 1,60       |
|                | Carbone organique dissous (mg/l)  | 1,10       | 3,28       | 4,85       | 5,74       | 3,87       | 4,28       |
| Température    | Température                       | 3,50       | 7,30       | 17,50      | 17,40      | 16,00      | 6,70       |
|                | Orthophosphates (mg/l)            | 0,15       | 0,89       | 1,83       | 0,53       | 1,17       | 0,44       |
|                | Phosphore total (mg/l)            | 0,10       | 0,31       | 0,68       | 0,20       | 0,41       | 0,17       |
| Nutriments     | Ammonium (mg/l)                   | 0,23       | 0,11       | 0,51       | 0,13       | 0,05       | 0,05       |
|                | Nitrites (mg/I)                   | 0,05       | 0,09       | 0,67       | 0,07       | 0,02       | 0,02       |
|                | Nitrates (mg/l)                   | 36,90      | 13,70      | 22,40      | 10,00      | 11,40      | 10,30      |
| Acidification  | pH min                            | 7,50       | 7,90       | 7,80       | 8,10       | 6,80       | 7,90       |
| Acidification  | pH max                            | 7,50       | 7,90       | 7,80       | 8,10       | 6,80       | 7,90       |
| Salinité       | Conductivité min (µS/cm)          | 252        | 307        | 419        | 304        | 462        | 315        |
| Samme          | Conductivité max (μS/cm)          | 252        | 307        | 419        | 304        | 462        | 315        |
| Etat des parai | mètres physico-chimiques généraux |            |            | Méd        | iocre      |            |            |

#### Pesticides (Présence par rapport aux limites de détection)


| Paramètre                   | 09/03/2021 | 12/04/2021 | 03/05/2021 | 08/06/2021 | 15/09/2021 | 05/10/2021 | 03/11/2021 |
|-----------------------------|------------|------------|------------|------------|------------|------------|------------|
| Cumul précipitations (H-48) | 2,4        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |
| Mesure de débit (m3/s)      | 0,035      | 0,031      | 0,045      | 0,016      | 0,022      | 0,063      | 0,032      |
| 1141 - 2,4 D                | <0,01      | 0,014      | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      |
| 1264 - 2,4,5 - T            | <0,01      | 0,011      | <0,01      | <0,01      | <0,01      | <0,01      | <0,01      |
| 1506 - Glyphosate           | <0,025     | 0,059      | <0,025     | 0,034      | 0,139      | 0,027      | 0,049      |
| 1907 - AMPA                 | <0,025     | 0,309      | 0,303      | 0,387      | 1,04       | 0,226      | 0,32       |
| 6853 - Metolachlore OXA     | 0,137      | <0,01      | 0,024      | 0,067      | 0,039      | 0,076      | 0,083      |
| 6854 - Metolachlore ESA     | 0,861      | 0,577      | 0,359      | 0,638      | 0,341      | 0,679      | 0,714      |

Les autres molécules suivies n'ont pas été détectées.

## BIOLOGIE (Arrêté du 27/07/2018)

#### Eléments biologiques

| INVERTEBRES | Indice<br>Shannon | ASPT    | Polyvoltinisme | Ovoviviparité | Richesse | I2M2    |
|-------------|-------------------|---------|----------------|---------------|----------|---------|
|             | 0,05120           | 0,64160 | 0,51400        | 0,32030       | 0,47620  | 0,41330 |



| DIATOMEES | Richesse<br>spécifique | Indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |
|-----------|------------------------|-----------------------------|--------------|----------|----------|-------------|
|           | 19                     | 2,92                        | 0,69         | 11,9     | 12,3     | 0,52        |

État des éléments biologiques : Médiocre

État écologique retenu : Médiocre





## Le Chanasson à Civens (04407016)

|                |                                   | CHRONIQUE DE DONNÉES |       |       |          |          |       |       |          |       |      |          |
|----------------|-----------------------------------|----------------------|-------|-------|----------|----------|-------|-------|----------|-------|------|----------|
|                |                                   | 2011                 | 2012  | 2013  | 2014     | 2015     | 2016  | 2017  | 2018     | 2019  | 2020 | 2021     |
|                | Oxygène dissous (mg/l)            |                      |       |       |          |          |       |       |          |       |      | 8,40     |
| Bilan de       | Taux sat. O2 dissous (%)          |                      |       |       |          |          |       |       |          |       |      | 89,00    |
| l'oxygène      | DBO5 (mg O2/I)                    |                      |       |       |          |          |       |       |          |       |      | 2,30     |
|                | Carbone organique dissous (mg/l)  |                      |       |       |          |          |       |       |          |       |      | 5,74     |
| Température    | Température                       |                      |       |       |          |          |       |       |          |       |      | 17,40    |
|                | Orthophosphates (mg/l)            |                      |       |       |          |          |       |       |          |       |      | 1,83     |
|                | Phosphore total (mg/l)            |                      |       |       |          |          |       |       |          |       |      | 0,68     |
| Nutriments     | Ammonium (mg/l)                   |                      |       |       |          |          |       |       |          |       |      | 0,51     |
|                | Nitrites (mg/l)                   |                      |       |       |          |          |       |       |          |       |      | 0,67     |
|                | Nitrates (mg/l)                   |                      |       |       |          |          |       |       |          |       |      | 36,90    |
| Acidification  | pH min                            |                      |       |       |          |          |       |       |          |       |      | 7,50     |
| Acidification  | pH max                            |                      |       |       |          |          |       |       |          |       |      | 7,90     |
| Salinité       | Conductivité min (µS/cm)          |                      |       |       |          |          |       |       |          |       |      | 262      |
| Samme          | Conductivité max (µS/cm)          |                      |       |       |          |          |       |       |          |       |      | 419      |
| Etat des parai | mètres physico-chimiques généraux |                      |       |       |          |          |       |       |          |       |      | Médiocre |
|                |                                   |                      |       |       |          |          |       |       |          |       |      |          |
|                |                                   | 2011                 | 2012  | 2013  | 2014     | 2015     | 2016  | 2017  | 2018     | 2019  | 2020 | 2021     |
| Invertébrés    | 12M2                              |                      |       |       |          |          |       |       |          |       |      | 0,41     |
| livertebies    | IBG-DCE                           | 7                    |       | 7     |          | 7        |       |       |          | 7     | 7    | 18       |
| Diatomées      | IBD                               |                      |       |       |          |          |       |       |          |       |      | 12,3     |
| Diatomees      | EQR                               |                      |       | 7     |          | 7        |       |       | <u> </u> | 7     | 7    | 0,52     |
| Macrophytes    | IBMR (EQR)                        |                      |       |       |          |          |       |       |          |       |      |          |
| Poissons       | IPR                               | 23,74                | 18,93 | 16,24 | 28,14    | 13,70    | 22,26 | 17,37 | 53,98    | 18,49 |      |          |
|                | Etat biologique retenu            | Moyen                | Moyen | Moyen | Médiocre | Très bon | Moyen | Moyen | Mauvais  | Moyen |      | Médiocre |
|                | ,                                 |                      |       |       |          |          |       |       |          |       |      |          |
| Etat é         | cologique annuel retenu           | Moyen                | Moyen | Moyen | Médiocre | Très bon | Moyen | Moyen | Mauvais  | Moyen |      | Médiocr  |

#### **INTERPRÉTATION DES RÉSULTATS**

En 2021, le Chanasson à Civens présente un état écologique médiocre, les paramètres physico-chimique et biologique étant déclassants.

L'analyse des paramètres physico-chimiques généraux montre des perturbations principalement en lien avec des apports en nutriment, orthophosphates et nitrites. Les analyses physico-chimiques complémentaires sur les pesticides indiquent la présence de plusieurs molécules. On retrouve la présence ponctuelle de l'acide\_2,4-dichlorophénoxyacétique (2,4 D) et de l'acide\_2,4,5-tichlorophénoxyacétique (2,4,5 T). Cette présence pose de nombreuses questions, car en plus d'être interdit en France depuis 2003 (2,4,5 T), des concentrations équivalentes en 2,4 D et 2,4,5 T correspondent à l'utilisation d'agent orange, totalement interdite en France et contenant de la TCDD, toxine parmi les plus toxiques pour l'Homme. On note également la présence de Glyphosate et surtout de l'AMPA, principal dérivé de sa dégradation dans l'environnement, particulièrement présente en septembre. Enfin on note la présence de deux dérivés issues du S-Métolachore, le Métolachlore OXA et ESA. Cependant, le Métolachlore ESA reste à ce jour considéré par l'ANSES comme un métabolite pertinent pour le suivi des eaux de consommation humaine et ne devant donc à ce titre pas dépasser les 0,1 µg/L. Cette valeur étant dépassée sur chacune des campagnes effectuées (jusqu'à 8 fois la dose maximale), on observe un risque important pour la ressource en eau potable et la nappe phréatique.

L'analyse diatomée indique un peuplement stable et équilibré, dominé par Gomphonema pumilum (GPRI – 42%) et Rhoicosphenia abbreviata (RABB - 14%). Ces deux taxons caractérisent une eau de qualité moyenne à médiocre, principalement en lien avec des apports en nutriments et sont présentes dans des eaux jusqu'à bétamesosaprobes ou de meilleures qualités. L'indice IPS, plus sensible aux altérations physicochimiques du milieu, confirme la présence de perturbation impactant le compartiment diatomée.

L'analyse macroinvertébré présente également une situation impactée, en particulier un indice de Shannon fortement altéré traduisant un n déséquilibre important du peuplement. On observe ainsi une prolifération d'organisme broyeurs (Gammaridaea) et racleurs (Potamoprygus – taxon invasif) semblant indiquer d'importants apports en matière organique exogène influant sur le développement de la macrofaune. L'outil diagnostic met en évidence un risque en lien avec les HAP pouvant influer sur la qualité de l'eau de cette station.

L'analyse de la chronique des données ne permet pas de dégager de tendance significative quant à l'évolution de l'état du cours d'eau en raison en raison de l'absence de donnée comparable.





## Le Bernand à Nervieux (04407020)

Caractéristiques de la station

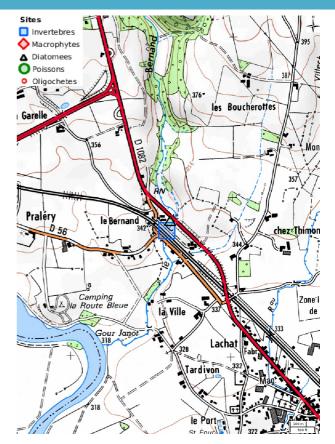
#### Date d'édition: 07/01/2022

Nom du cours d'eau concerné: Le Bernand

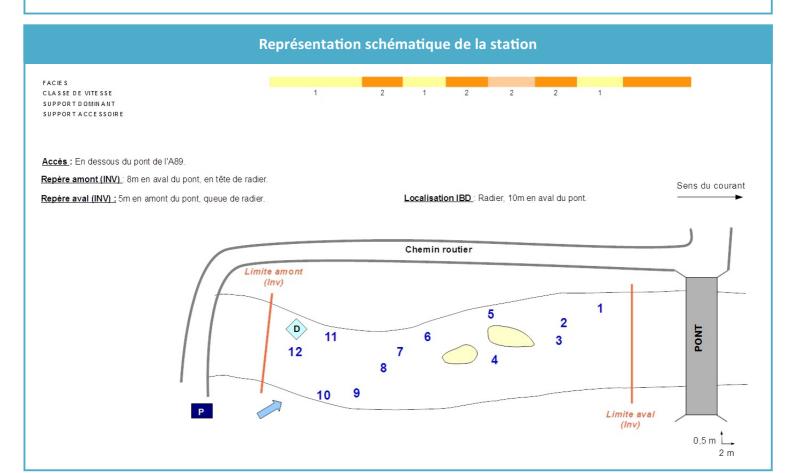
Code masse d'eau: FRGR1598

Nom de la masse d'eau: LE BERNAND ET SES AFFLUENTS DEPUIS

LA SOURCE JUSQU'A LA RETENUE DE VILLEREST


**Hydroécorégions:** 17 DEPRESSIONS SEDIMENTAIRES (HER2: 45)

Type de la masse d'eau: TP3


| Coordonnée    | Coordonnées de la station en RGF93 / Lambert-93 (2154) |              |  |  |  |  |  |  |  |
|---------------|--------------------------------------------------------|--------------|--|--|--|--|--|--|--|
| X (longitude) | Y (latitude)                                           | Altitude (m) |  |  |  |  |  |  |  |
| 791004        | 6526285                                                | 0            |  |  |  |  |  |  |  |



Vue globale



Localisation de la station







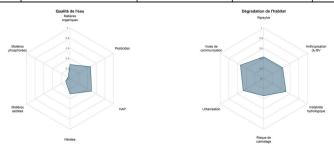
# Le Bernand à Nervieux (04407020)

#### **PHYSICO-CHIMIE**

#### Paramètres physico-chimiques généraux (Arrêté du 27/07/2018)

|                |                                   | 19/01/2021 | 01/04/2021 | 17/06/2021 | 12/08/2021 | 09/09/2021 | 14/10/2021 |
|----------------|-----------------------------------|------------|------------|------------|------------|------------|------------|
| Mesure de débi | t (m3/s)                          | 0,890      | 0,043      | 0,002      | 0,016      | 0,005      | 0,066      |
|                | Oxygène dissous (mg/l)            | 12,70      | 11,90      | 8,92       | 9,00       | 8,70       | 9,60       |
| Bilan de       | Taux sat. O2 dissous (%)          | 101        | 105        | 100        | 99         | 94         | 92         |
| l'oxygène      | DBO5 (mg O2/I)                    | 1,70       | 0,50       | 0,80       | 0,80       | 0,90       | 1,50       |
|                | Carbone organique dissous (mg/l)  | 4,41       | 2,51       | 3,50       | 4,72       | 3,82       | 4,30       |
| Température    | Température                       | 4,40       | 8,30       | 19,10      | 18,60      | 17,50      | 7,90       |
|                | Orthophosphates (mg/l)            | 0,05       | 0,03       | 0,06       | 0,08       | 0,07       | 0,04       |
|                | Phosphore total (mg/l)            | 0,03       | 0,02       | 0,04       | 0,04       | 0,03       | 0,02       |
| Nutriments     | Ammonium (mg/l)                   | 0,05       | 0,10       | 0,06       | 0,11       | 0,05       | 0,05       |
|                | Nitrites (mg/I)                   | 0,02       | 0,82       | 0,02       | 0,02       | 0,02       | 0,02       |
|                | Nitrates (mg/l)                   | 36,30      | 6,83       | 2,62       | 3,92       | 1,43       | 5,58       |
| Acidification  | pH min                            | 7,70       | 8,40       | 8,10       | 7,50       | 7,80       | 7,90       |
| Acidification  | pH max                            | 7,70       | 8,40       | 8,10       | 7,50       | 7,80       | 7,90       |
| Salinité       | Conductivité min (µS/cm)          | 267        | 348        | 354        | 335        | 368        | 316        |
| Saiiiile       | Conductivité max (µS/cm)          | 267        | 348        | 354        | 335        | 368        | 316        |
| Etat des para  | mètres physico-chimiques généraux |            |            | Méd        | iocre      |            |            |

#### Pesticides (Présence par rapport aux limites de détection)


| Paramètre                   | 10/03/2021 | 12/04/2021 | 04/05/2021 | 08/06/2021 | 15/09/2021 | 05/10/2021 | 03/11/2021 |
|-----------------------------|------------|------------|------------|------------|------------|------------|------------|
| Cumul précipitations (H-48) | 2,4        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |
| Mesure de débit (m3/s)      | 0,038      | 0,112      | 0,091      | 0,046      | 0,126      | 0,523      | 0,184      |
| 1128 - Captane              | <0,05      | <0,05      | <0,05      | <0,05      | 0,124      | <0,05      | <0,05      |
| 6854 - Metolachlore ESA     | 0,152      | 0,102      | 0,071      | 0,093      | 0,057      | 0,072      | 0,112      |

Les autres molécules suivies n'ont pas été détectées.

## BIOLOGIE (Arrêté du 27/07/2018)

#### Eléments biologiques

| INVERTEBRES | Indice<br>Shannon | ASPT    | Polyvoltinisme | Ovoviviparité | Richesse | 12M2    |
|-------------|-------------------|---------|----------------|---------------|----------|---------|
|             | 0,67560           | 0,75240 | 0,52780        | 0,51950       | 0,21430  | 0,55130 |



| DIATOMEES | Richesse<br>spécifique | Indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |
|-----------|------------------------|-----------------------------|--------------|----------|----------|-------------|
|           | 37                     | 3,45                        | 0,66         | 16,4     | 16,9     | 0,85        |

État des éléments biologiques : Bon

État écologique retenu : Moyen





## Le Bernand à Nervieux (04407020)

|                | CHRONIQUE DE DONNÉES              |      |      |      |      |      |      |      |      |      |      |          |
|----------------|-----------------------------------|------|------|------|------|------|------|------|------|------|------|----------|
|                |                                   | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021     |
|                | Oxygène dissous (mg/l)            |      |      |      |      |      |      |      |      |      |      | 8,90     |
| Bilan de       | Taux sat. O2 dissous (%)          |      |      |      |      |      |      |      |      |      |      | 94,00    |
| l'oxygène      | DBO5 (mg O2/I)                    |      |      |      |      |      |      |      |      |      |      | 1,70     |
|                | Carbone organique dissous (mg/l)  |      |      |      |      |      |      |      |      |      |      | 4,72     |
| Température    | Température                       |      |      |      |      |      |      |      |      |      |      | 18,90    |
|                | Orthophosphates (mg/l)            |      |      |      |      |      |      |      |      |      |      | 0,08     |
|                | Phosphore total (mg/l)            |      |      |      |      |      |      |      |      |      |      | 0,04     |
| Nutriments     | Ammonium (mg/l)                   |      |      |      |      |      |      |      |      |      |      | 0,11     |
|                | Nitrites (mg/l)                   |      |      |      |      |      |      |      |      |      |      | 0,82     |
|                | Nitrates (mg/l)                   |      |      |      |      |      |      |      |      |      |      | 36,30    |
| Acidification  | pH min                            |      |      |      |      |      |      |      |      |      |      | 7,70     |
| Acidification  | pH max                            |      |      |      |      |      |      |      |      |      |      | 8,30     |
| Salinité       | Conductivité min (µS/cm)          |      |      |      |      |      |      |      |      |      |      | 267      |
| Samme          | Conductivité max (µS/cm)          |      |      |      |      |      |      |      |      |      |      | 368      |
| Etat des paran | nètres physico-chimiques généraux |      |      |      |      |      |      |      |      |      |      | Médiocre |
|                |                                   |      |      |      |      |      |      |      |      |      |      |          |
|                |                                   | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021     |
| Invertébrés    | 12M2                              |      |      |      |      |      |      |      |      |      |      | 0,55     |
| mvertebres     | IBG-DCE                           |      |      | 7    | 7    |      |      | 7    | 7    |      | 7    | 16       |
| Diatomées      | IBD                               |      |      |      |      |      |      |      |      |      |      | 16,9     |
| Diatomees      | EQR                               |      |      | 7    |      |      |      |      |      |      | 7    | 0,85     |
| Macrophytes    | IBMR (EQR)                        |      |      |      |      |      |      |      |      |      |      |          |
| Poissons       | IPR                               |      |      |      |      |      |      |      |      |      |      |          |
| i i            | tat biologique retenu             |      |      |      |      |      |      |      |      |      |      | Bon      |
|                |                                   |      |      |      |      |      |      |      |      |      |      |          |
| Etat é         | cologique annuel retenu           |      |      |      |      |      |      |      |      |      |      | Médiocre |

#### INTERPRÉTATION DES RÉSULTATS

En 2021, le Bernand à Nervieux présente un état écologique médiocre, le compartiment physicochimique étant déclassant.

L'analyse des paramètres physico-chimiques généraux montre cependant une situation plus nuancée, avec une seule campagne déclassante sur l'ensemble de l'année. Cette forte hausse des nitrites, circonscrite au mois d'avril, est cohérente avec la législation, la campagne correspondant aux dates d'autorisations d'épandage en matière azotée. Le reste des campagnes dépeint une eau de bonne qualité et l'absence de perturbation.

Les analyses physico-chimiques complémentaires sur les pesticides indiquent la présence de deux molécules. Une présence ponctuelle et limité de Captane, un fongicide, relevée durant la campagne de septembre, et la présence constante de Métolachlore ESA, dérivé produit par la dégradation du S-Métolachlore. Celui-ci reste à ce jour considéré par l'ANSES comme un métabolite pertinent pour le suivi des eaux de consommation humaine et ne devant donc à ce titre pas dépasser les 0,1 µg/L. Cette valeur étant dépassée sur plusieurs des campagnes effectuées, on observe un faible risque pour la ressource en eau potable et la nappe phréatique.

L'analyse diatomée indique un peuplement stable, diversifié et équilibré, dominé par Achnanthidium minutissimum (ADMI – 41%) et Gomphonema olivaceum (GOLI – 11%). La présence d'ADMI, complexe taxonomique dont le profil écologique est basé sur seulement quelques espèces ayant un très bon profil de polluosensibilité, peut ainsi entraîner une surestimation de la note. A ce titre, la présence de GOLI, sensible aux variations saprobiales mais présentant une affinité pour les milieux riches en nutriments semble indiquer que ADMI n'est pas ici représenté par la frange la plus polluosensible de son cortège taxonomique. Cependant, l'indice IPS, plus sensible aux altérations physico-chimiques du milieu, confirme l'absence de perturbation significative impactant le compartiment diatomée.

L'analyse macroinvertébré présente une bonne qualité globale, en lien avec la présence de taxons polluosensibles, comme les Perlodidae, permettant d'obtenir une bonne métrique d'ASPT. Cependant on note une faible richesse spécifique, ceci malgré une mosaïque d'habitât biogène et diversifié. L'I2M2 ne mettant pas en avant de perturbation significative (état ≥ à bon), l'utilisation de l'outil diagnostic n'est pas pertinente.

L'analyse de la chronique des données ne permet pas de dégager de tendance significative quant à l'évolution de l'état du cours d'eau en raison de l'absence de donnée comparable.





# La Revoute à Balbigny (04409023)

#### Date d'édition: 07/01/2022

### Caractéristiques de la station

Nom du cours d'eau concerné: La Revoute

Code masse d'eau: FRGR1641

Nom de la masse d'eau: LA REVOUTE ET SES AFFLUENTS DEPUIS

LA SOURCE JUSQU'A LA RETENUE DE VILLEREST **Hydroécorégions:** 3 MASSIF CENTRAL SUD (HER2 : 86)

Type de la masse d'eau: TP3

| Coordonnée    | Coordonnées de la station en RGF93 / Lambert-93 (2154) |              |  |  |  |  |  |  |  |
|---------------|--------------------------------------------------------|--------------|--|--|--|--|--|--|--|
| X (longitude) | Y (latitude)                                           | Altitude (m) |  |  |  |  |  |  |  |
| 788825        | 6527904                                                | 0            |  |  |  |  |  |  |  |



Invertebres

Macrophytes

Diatomees

Poissons

Oligochetes

Oligochete

Vue globale

Localisation de la station

## Représentation schématique de la station FA CIES CLASSE DE VITESSE SUPPORT DOMINANT SUPPORTACCESSOIRE Accès: Par chemin forestier en rive droite. Repère amont (INV): Souche en rive droite. Sens du courant Repère aval (INV): Queue de radier au niveau de la clôture en barbelés. Localisation IBD : Aval immédiat de la clôture en barbelés. Limite aval (Inv) Limite amont (Inv) 3 2 7 8 12 10 11 Buse 0.25 mL



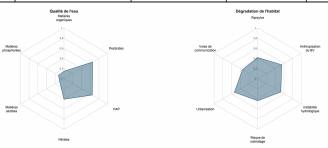
# La Revoute à Balbigny (04409023)

#### **PHYSICO-CHIMIE**

#### Paramètres physico-chimiques généraux (Arrêté du 27/07/2018)

|                |                                   | 19/01/2021 | 01/04/2021 | 17/06/2021 | 12/08/2021 | 09/09/2021 | 14/10/2021 |
|----------------|-----------------------------------|------------|------------|------------|------------|------------|------------|
| Mesure de débi | ts (m3/s)                         | 0,438      | 0,013      | 0,006      | 0,013      | 0,001      | 0,031      |
|                | Oxygène dissous (mg/l)            | 13,10      | 12,20      | 9,02       | 8,70       | 9,20       | 10,20      |
| Bilan de       | Taux sat. O2 dissous (%)          | 102        | 103        | 101        | 95         | 99         | 99         |
| l'oxygène      | DBO5 (mg O2/I)                    | 2,00       | 0,50       | 2,40       | 1,00       | 0,90       | 1,20       |
|                | Carbone organique dissous (mg/l)  | 1,40       | 3,68       | 6,31       | 8,79       | 4,78       | 6,84       |
| Température    | Température                       | 3,50       | 6,80       | 19,00      | 18,30      | 17,20      | 7,30       |
|                | Orthophosphates (mg/l)            | 0,09       | 0,20       | 0,36       | 0,30       | 0,29       | 0,17       |
|                | Phosphore total (mg/l)            | 0,06       | 0,08       | 0,19       | 0,12       | 0,11       | 0,07       |
| Nutriments     | Ammonium (mg/l)                   | 0,05       | 0,09       | 0,06       | 0,12       | 0,05       | 0,05       |
|                | Nitrites (mg/I)                   | 0,02       | 0,02       | 0,02       | 0,02       | 0,02       | 0,02       |
|                | Nitrates (mg/l)                   | 16,00      | 4,87       | 3,96       | 3,57       | 1,03       | 5,37       |
| Acidification  | pH min                            | 7,70       | 8,30       | 8,20       | 7,60       | 8,10       | 8,00       |
| Acidification  | pH max                            | 7,70       | 8,30       | 8,20       | 7,60       | 8,10       | 8,00       |
| Salinité       | Conductivité min (µS/cm)          | 248        | 376        | 483        | 377        | 464        | 304        |
| Jannite        | Conductivité max (μS/cm)          | 248        | 376        | 483        | 377        | 464        | 304        |
| Etat des para  | mètres physico-chimiques généraux |            |            | Mo         | yen        |            |            |

#### Pesticides (Présence par rapport aux limites de détection)


| Paramètre                   | 10/03/2021 | 12/04/2021 | 04/05/2021 | 08/06/2021 | 15/09/2021 | 05/10/2021 | 03/11/2021 |
|-----------------------------|------------|------------|------------|------------|------------|------------|------------|
| Cumul précipitations (H-48) | 2,4        | 20,4       | 14,8       | 35,0       | 14,2       | 43,3       | 21,2       |
| Mesure de débits (m3/s)     | 0,026      | 0,044      | 0,025      | 0,021      | 0,042      | 0,274      | 0,048      |
| 1506 - Glyphosate           | <0,025     | <0,025     | <0,025     | <0,025     | 0,039      | <0,025     | <0,025     |
| 1907 - AMPA                 | 0,085      | 0,107      | 0,103      | 0,121      | 0,266      | 0,029      | 0,074      |
| 6853 - Metolachlore OXA     | 0,052      | <0,01      | 0,012      | 0,025      | <0,01      | 0,057      | 0,035      |
| 6854 - Metolachlore ESA     | 0,359      | 0,189      | 0,143      | 0,253      | 0,114      | 0,363      | 0,374      |

Les autres molécules suivies n'ont pas été détectées.

## BIOLOGIE (Arrêté du 27/07/2018)

#### Eléments biologiques

| INVERTEBRES | Indice<br>Shannon | ASPT    | Polyvoltinisme | Ovoviviparité | Richesse | I2M2    |
|-------------|-------------------|---------|----------------|---------------|----------|---------|
|             | 0,22210           | 0,77110 | 0,27850        | 0,32600       | 0,19050  | 0,37430 |



| DIATOMEES | Richesse<br>spécifique | Indice de Shannon<br>weaver | Equitabilité | Note IPS | Note IBD | Note en EQR |
|-----------|------------------------|-----------------------------|--------------|----------|----------|-------------|
|           | 26                     | 2,92                        | 0,62         | 14,8     | 16,2     | 0,8         |

État des éléments biologiques : Moyen

État écologique retenu : Moyen





## La Revoute à Balbigny (04409023)

| CHRONIQUE DE DONNÉES |                                   |      |      |      |      |      |      |      |          |      |      |       |
|----------------------|-----------------------------------|------|------|------|------|------|------|------|----------|------|------|-------|
|                      |                                   | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018     | 2019 | 2020 | 2021  |
|                      | Oxygène dissous (mg/l)            |      |      |      |      |      |      |      |          |      |      | 8,80  |
| Bilan de             | Taux sat. O2 dissous (%)          |      |      |      |      |      |      |      |          |      |      | 97,00 |
| l'oxygène            | DBO5 (mg O2/I)                    |      |      |      |      |      |      |      |          |      |      | 2,40  |
|                      | Carbone organique dissous (mg/l)  |      |      |      |      |      |      |      |          |      |      | 8,79  |
| Température          | Température                       |      |      |      |      |      |      |      |          |      |      | 18,90 |
| Nutriments           | Orthophosphates (mg/l)            |      |      |      |      |      |      |      |          |      |      | 0,36  |
|                      | Phosphore total (mg/l)            |      |      |      |      |      |      |      |          |      |      | 0,19  |
|                      | Ammonium (mg/l)                   |      |      |      |      |      |      |      |          |      |      | 0,12  |
|                      | Nitrites (mg/l)                   |      |      |      |      |      |      |      |          |      |      | 0,02  |
|                      | Nitrates (mg/l)                   |      |      |      |      |      |      |      |          |      |      | 16,00 |
| Acidification        | pH min                            |      |      |      |      |      |      |      |          |      |      | 7,60  |
|                      | pH max                            |      |      |      |      |      |      |      |          |      |      | 8,30  |
| Salinité             | Conductivité min (μS/cm)          |      |      |      |      |      |      |      |          |      |      | 282   |
|                      | Conductivité max (µS/cm)          |      |      |      |      |      |      |      |          |      |      | 464   |
| Etat des parar       | nètres physico-chimiques généraux |      |      |      |      |      |      |      |          |      |      | Moyen |
|                      |                                   |      | 1    |      |      |      |      |      |          |      |      |       |
|                      |                                   | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018     | 2019 | 2020 | 2021  |
| Invertébrés          | 12M2                              |      | L    |      |      |      |      |      |          |      |      | 0,37  |
|                      | IBG-DCE                           |      |      |      |      |      |      |      |          |      |      | 15    |
| Diatomées            | IBD                               |      |      |      |      |      |      |      |          |      |      | 16,2  |
|                      | EQR                               |      |      |      |      |      |      |      |          |      |      | 0,80  |
| Macrophytes          | IBMR (EQR)                        |      |      |      |      |      |      |      |          |      |      |       |
| Poissons             | IPR                               |      |      |      |      |      |      |      | 31,58    |      |      |       |
|                      | Etat biologique retenu            |      |      |      |      |      |      |      | Médiocre |      |      | Moyen |
|                      | cologique annuel retenu           |      |      |      |      |      |      |      | Médiocre |      |      | Moyer |

#### **INTERPRÉTATION DES RÉSULTATS**

En 2021, la Revoute à Balbigny présente un état écologique moyen, les compartiments physico-chimique et biologique étant déclassant.

L'analyse des paramètres physico-chimiques généraux montre cependant une situation plus nuancée, avec une seule campagne déclassante sur l'ensemble de l'année. Cette hausse du carbone organique dissous (COD), corrélée avec une augmentation des apports en nutriments, pourrait indiquer un risque d'eutrophisation sur la période estivale. L'ensemble des autres campagnes ne révèlent aucune perturbation significative, permettant de relativiser le déclassement de l'état physico-chimique.

Les analyses physico-chimiques complémentaires sur les pesticides indiquent la présence de plusieurs molécules. La présence de Glyphosate est détectée en septembre en faible quantité. Cependant, l'AMPA, principale produit de la dégradation du glyphosate, est observé sur l'ensemble de l'année, soulignant la rémanence de ce composé. On note également la présence de Métolachlore OXA et ESA, ces deux composés étant les dérivés principaux du S-métolachlore, désherbant utilisé sur les cultures de maïs et de tournesol. Cependant, le Métolachlore ESA reste à ce jour considéré par l'ANSES comme un métabolite pertinent pour le suivi des eaux de consommation humaine et ne devant donc à ce titre pas dépasser les 0,1 µg/L. Cette valeur étant fortement dépassée sur chacune des campagnes effectuées, on observe un risque important pour la ressource en eau potable et la nappe phréatique.

L'analyse diatomées indique un peuplement stable et équilibré, dominé par Gomphonema pumilum (GPRI -40%) et Gomphonema elegantissimum (GELG- 18 %). La présence de GPRI, caractéristique des eaux moyennes a médiocre est ici contrebalancée par GELG, complexe oligosaprobe. Il semble donc que GRPI soit ici représenté par la partie la plus polluosensible de son complexe, décrivant un milieu peu chargé en matière organique, et modérément chargé en nutriment. La note IPS, plus sensible aux altérations physico-chimiques du milieu, indique une possible surévaluation de la qualité biologique du cours d'eau. L'analyse macroinvertébré, signale la présence de perturbation impactant la macrofaune. On remarque en particulier les métriques de richesse spécifique et d'indice de Shannon fortement altérées, et ceci malgré une mosaïque d'habitats biogènes et diversifiée favorisant le développement de la macrofaune. L'analyse du peuplement indique cependant la présence de taxons fortement polluosensibles, comme les Perlodidae, permettant une bonne métrique d'ASPT. L'outil diagnostic met en avant des risques de perturbations en lien avec les HAP et les voies de communication.

L'analyse de la chronique des données ne permet pas de dégager de tendance significative quant à l'évolution de l'état du cours d'eau en raison de l'absence de donnée comparable.

# Rapports d'essais



